Tandem Addition of Phosphite Nucleophiles Across Unsaturated Nitrogen-Containing Systems: Mechanistic Insights on Regioselectivity

Wouter Debrouwer,[†] Dietmar Hertsen,[‡] Thomas S. A. Heugebaert,[†] Esma Birsen Boydas,[§] Veronique Van Speybroeck,[‡] Saron Catak,^{*,‡,§} and Christian V. Stevens^{*,†}

[†]SynBioC Research Group, Department of Sustainable Organic Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

[‡]Center for Molecular Modeling, Ghent University, Technologiepark 903, 9052 Zwijnaarde, Belgium

[§]Department of Chemistry, Bogazici University, Bebek, Istanbul, 34342 Turkey

Supporting Information

ABSTRACT: The addition of phosphite nucleophiles across linear unsaturated imines is a powerful and atom-economical methodology for the synthesis of aminophosphonates. These products are of interest from both a biological and a synthetic point of view: they act as amino acid transition state analogs and Horner–Wadsworth–Emmons reagents, respectively. In this work the reaction between dialkyl trimethylsilyl phosphites and $\alpha, \beta, \gamma, \delta$ -diunsaturated imines was evaluated as a continuation of our previous efforts in the field. As such, the first conjugate 1,6-addition of a phosphite nucleophile across a linear unsaturated *N*-containing system is reported herein. Theoretical calculations were performed to rationalize the observed regioselectivites and to shed light on the proposed mechanism.

INTRODUCTION

The addition of phosphorus nucleophiles across unsaturated systems is a conceptually simple yet powerful and atomeconomical tool for the construction of C–P bonds.^{1–7} Michael-type additions of phosphorus nucleophiles are known,^{8–19} but conjugate 1,6-additions of phosphorus nucleophiles are unprecedented to the best of our knowledge. Conjugate 1,6-additions (vinylogous Michael reactions) are known for carbon nucleophiles under transition-metal catalysis or organocatalysis, and enantioselective variants have also been reported.²⁰

Numerous transition metals have been used, of which Cu(I) has received the most attention. Cu salts readily transmetalate other organometallic reagents such as trialkylaluminums, Grignard reagents, diethyl zinc, and organolithiums.^{21–24} After initial formation of a π -complex, the organocuprate undergoes addition to the unsaturated system. 1,3-Migration, or the lack of it, dictates the regioselectivity of the conjugate addition and is influenced by electronic and steric factors.²² Pd, Ir, and other metals have been reported to mediate 1,6-conjugate additions as well,^{25–28} and Yamamoto and co-workers even succeeded in a conjugate 1,8-addition using Pd catalysts.²⁶

The approach in organocatalytic 1,6-conjugate addition relies on lowering the LUMO of the substrate, often by formation of an intermediate iminium ion ("vinylogous iminium ion catalysis").²⁹ A pending nucleophile, activated (elevated HOMO) or not, then attacks the conjugated system and is directed to the δ -position by both steric and electronic factors.³⁰ Application of chiral organocatalysts, e.g., prolinol and cinchona derivatives, has resulted in excellent remote stereocontrol.^{30–34} Ooi and co-workers used triaminoiminophosphoranes, a type of phosphazene, as organocatalysts which resulted in the regio-, stereo-, and diastereoselective formation of 1,6- and 1,8- adducts.²⁹

Selective uncatalyzed conjugate 1,6-addition has been reported in only two cases. $^{35-37}$ In a continuation of our work on tandem 1,4–1,2-phosphite additions across α , β -unsaturated imines 1, $^{8,38-42}$ the feasibility of a tandem 1,6–1,4–1,2-addition to suitable α , β , γ , δ -diunsaturated imines 3 was assessed (Scheme 1). In addition to their synthetic relevance, triadducts 4 are of potential biological interest as their tricarboxylic analogs display micromolar activity as agonists of ionotropic glutamate receptors (iGluRs). 43 Anticipated side products were 1,4–1,2-adducts 5 or 1,6–1,2-adducts 6.

Received: September 25, 2016 Published: December 6, 2016 Scheme 1. Envisaged Transformation of 3 to 4 Based on Previous Work

RESULTS AND DISCUSSION

Phosphite Addition: Results and Regioselectivity. The required $\alpha_{i}\beta_{i}\gamma_{i}\delta$ -diunsaturated imines 3 were prepared from their respective lower aldehyde homologues by the Wittig reaction,⁴⁴ followed by imination (see SI for details). They were then treated with dimethyl trimethylsilyl phosphite (DMPTMS), a reactive phosphite nucleophile,⁴⁵⁻⁴⁸ and sulfuric acid in order to activate the conjugated system for nucleophilic attack. The benzyl imine of 3a was selected as model substrate, as tandem addition to its lower homologue proceeded readily.⁸ Upon application of our previously optimized conditions (2 equiv of DMPTMS, 0.5 equiv of H_2SO_4 , 30 min at room temperature),⁸ the imine 3a was completely consumed but only a trace of double addition product was detected (Table 1, entry 1). The major product was the corresponding α -aminophosphonate, resulting from 1,2-attack across the imine. Prolonging the reaction time to 24 h resulted in merely 40% conversion to a double-addition product (entry 2). In order to assess whether a triple tandem addition was feasible and to drive the reaction to completion, a large excess of DMPTMS was added (entry 3). This resulted in 57% conversion to diastereomeric double-addition compounds. After careful separation, it became clear that two diastereomers of the tandem 1,4-1,2-addition product 5 had been formed. Interestingly, no products 4 or 6 resulting from 1,6-phosphite addition were present in the crude reaction mixture. As reaction at room temperature failed to engender complete conversion to a doubleaddition product, it was performed at reflux temperature (entry 4).

Gratifyingly, these conditions resulted in full transformation of the doubly unsaturated imine to 1,4–1,2-adducts **5** after 8 h in a good isolated yield (77%). The tandem addition is diastereoselective (dr 7/3, according to ³¹P NMR integration) in favor of the diastereomers which display ³¹P–³¹P coupling in ³¹P NMR (⁴*J*_{PP} = ca. 10 Hz). On account of the flexibility of the linear chain the relative configuration of the products could not be determined.

Other derivatives of 3a with various R groups were prepared and subjected to the same reaction conditions (entries 5–11). The *n*-Pr and *i*-Pr derivatives displayed very similar behavior: reflux temperature was required to drive the reactions to completion and good yields were obtained. Again, only tandem 1,4–1,2-adducts were formed and the diastereomeric ratios were very similar to those of the Bn derivative. For the *t*-Bu derivative not even a large excess of DMPTMS could drive the reaction to completion at room temperature (entry 9). Again, at reflux temperature full conversion to the tandem 1,4-1,2-adduct was attained (entry 10). It is noteworthy that an excess of phosphite did not result in any 1,6-addition whatsoever, even at reflux temperature (entry 11). This implies a certain regioselectivity in the case of substrates **3a**, possibly due to the conservation of a conjugated stryrenyl moiety. Any 1,6-addition would result in disruption of the conjugated system to the phenyl ring, an energetically unfavorable event. With regard to the diastereoselectivity for the *t*-Bu derivative an approximate 1/1 ratio is obtained. This is somewhat different than for the other derivatives (entries 4, 6, and 8), possibly due to the sterically demanding *t*-Bu substituent.

Imines 3b derived from E,E-hexadienal were also evaluated as substrates. In this case, the benzyl imine was completely converted into diastereomeric diphosphonylated compounds at room temperature (entry 12), contrary to the cinnamaldehyde derivatives. Interestingly, the crude ³¹P NMR spectrum displayed a number of novel peaks. Purification followed by careful spectral analysis demonstrated that the 1,6-1,2-adduct had also been formed in this case. A 1/1 crude mixture of 1,6–1,2-adduct and 1,4-1,2-adduct was obtained in 75% yield. The 1,4-1,2-adducts were obtained as E/Z isomers, as was apparent from the ¹³C shifts of the vinylic methyl group (see Experimental Section for details). Similar to entry 9, augmenting the nucleophile loading had no influence on the regioselectivity nor did performing the reaction at reflux temperature (entries 13 and 14). It is noteworthy that in the 1,6-1,2-adducts the double bond has shifted as compared to the starting material (for an elaborate mechanistic discussion, vide infra). The n-Pr derivative displayed a larger regioselectivity in favor of the 1,4-1,2-adducts, possibly on account of steric reasons (entry 15). For R = i-Pr the nucleophile loading as well as the reaction temperature did not seem to influence the outcome of the reaction. There was a small shift toward more 1,6-1,2-adduct when an excess of nucleophile was employed (entries 16 and 18 vs 17 and 19). From these results it is apparent that the products derived from 3b are much more polar than their 3a analogues, as reflected in the isolated yields.

Table 2 shows the regioselectivities of the phosphite additions as well as the diastereomeric ratios obtained. Similar to the Bn, n-Pr, and i-Pr derivatives in entries 4, 6, and 8 (Table 1), the dr for the 1,4–1,2-adducts is ca. 7/3, except for more sterically

Table 1. Tandem Phosphite Addition to $\alpha, \beta, \gamma, \delta$ -Diunsaturated Imines

1	N ⁻ R ²	P(OTMS)(OMe	e) ₂ MeC MeO), /0 −P [′] HN ⁻ F	2	M Me	eO、∕O ⊡O−P HN	r^{R^2}	
	L	112504	*	λ.	,OMe	or		OMe	
R' ∽ ∽	Ή	dry CH ₂ Cl ₂	R' 🌣	Ý Ý Ý	OMe		$R^1 \checkmark \checkmark$	`₽́ "`OMe O	
3				5			6		
J			1,4	4-1,2-addu	ct		1,6-1,2-add	uct	
substrate	entry	R ²	DMPTMS (equiv)	H₂SO₄ (equiv)	Time (h)	Temp (°C)	Tandem Addition ^[a] (isolated yield, %)	Ratio 5/6	dr
	1	Bn (3a1)	2	0.5	0.5	rt	10 (-)	1/0	-
	2	Bn (3a1)	2	0.5	24	rt	40 (-)	1/0	-
_	3	Bn (3a1)	10	0.5	24	rt	57 (-)	1/0	-
Ŋ́ ^R	4	Bn (3a1)	2	0.5	8	Δ	100 (77)	1/0	7/3
	5	<i>n</i> -Pr (3a2)	2	0.5	24	rt	60 (-)	1/0	-
	6	<i>n</i> -Pr (3a2)	2	0.5	7	Δ	100 (71)	1/0	7/3
У́За	7	<i>i</i> -Pr (3a3)	2	0.5	24	rt	65 (-)	1/0	-
	8	<i>i</i> -Pr (3a3)	2	0.5	6	Δ	100 (82)	1/0	7/3
	9	<i>t</i> -Bu (3a4)	10	0.5	24	rt	92 (-)	1/0	-
	10	<i>t</i> -Bu (3a4)	2	0.5	3	Δ	100 (73)	1/0	1/1
	11	<i>t</i> -Bu (3a4)	5	0.5	3	Δ	100 (-)	1/0	-
	12	Bn (3b1)	2	0.5	16	rt	100 (75)	1/1	[b]
	13	Bn (3b1)	5	0.5	24	rt	100 (69)	1/1	-
_	14	Bn (3b1)	5	0.5	24	Δ	100 (-)	1/1	-
Ŋ́ [™]	15	<i>n</i> -Pr (3b2)	2	0.5	5	rt	100 (50)	7/3	[D]
Ме	16	<i>i</i> -Pr (3b3)	2	0.5	8	rt	100 (43)	6/4	[D]
3b	17	<i>i</i> -Pr (3b3)	5	0.5	3	rt	100 (40)	1/1	-
	18	<i>i-</i> Pr (3b3)	2	0.5	3	Δ	100 (-)	6/4	-
	19	<i>i</i> -Pr (3b3)	5	0.5	3	Δ	100 (-)	1/1	-
	20	<i>t</i> -Bu (3b4)	2	0.5	3	rt	100 (60)	6/4	[0]
	21	<i>i</i> -Pr (3c)	2	0.5	24	rt	78 (-)	1/0	-
₹ 3c H	22	<i>i</i> -Pr (3c)	2	0.5	1	Δ	100 (84)	1/0	-

^aThe remainder is 1,2-addition product. ^bSee Table 2.

Table 2. Diastereomeric Ratios for Isolated 1,4–1,2- and 1,6–1,2-Adducts of 3b

entry	isolated yield (%)	ratio 5/6	dr 5	dr 6
12	75	1/1	7/3	1/1
15	50	7/3	7/3	6/4
16	43	6/4	6/4	6/4
20	60	6/4	1/1	1/1

hindered substrates (*i*-Pr and *t*-Bu). With respect to the 1,6–1,2adducts, the dr is approximately 1/1 for all derivatives (Table 2). Finally, a diunsaturated imine derived from (1R)-(-)-myrtenal **3c** was subjected to the developed reaction conditions (Table 1, entries 21 and 22). Similar to **3a**, reflux temperature was required to obtain full conversion to diphosphonylated compounds. Furthermore, no 1,6–1,2-adduct was observed, suggesting that aside from conjugation, regioselectivity of phosphite addition is governed by steric factors at the distal end of the unsaturated system as well.

Besides tandem addition the regioselectivity could be steered to 1,2-addition as well, furnishing the classical Kabachnik–Fields products.⁴⁹ For most derivatives it was sufficient to simply lower the amount of DMPTMS to one equivalent and perform the reaction at room temperature (Table 3, entry 1), as compared to the conditions that result in tandem addition. For other derivatives, 1 equiv of DMPTMS was inadequate to result in full conversion (entries 2 and 3). Upon augmenting the amount of DMPTMS, more H_2SO_4 was required in order to prevent any tandem addition (entry 4, mechanistic discussion vide infra).

However, as DMPTMS is labile in the presence of large amounts of H_2SO_4 , a larger excess of nucleophile was a prerequisite to obtain full conversion (entry 5). In this manner, all substrates were converted into the corresponding 1,2-adducts in moderate to excellent isolated yields (Table 3). As such, by adjusting the loading of both the nucleophile and the acid, the regioselectivity of the phosphite addition can easily by governed.

Mechanistic Considerations. In our previous communications on tandem 1,4–1,2-phosphite additions some tentative mechanisms were proposed.^{8,40–42} Nonetheless, this particular work has resulted in several new mechanistic insights, and the current hypotheses are presented herein (Scheme 2). Without any acid present no phosphite addition to the unsaturated system takes place, and this is clearly visible, since upon addition of H₂SO₄ to the reaction medium it may even start to boil. Once imine **A** is suitably activated (species **B**) phosphite addition can take place and result in initial 1,6-, 1,4-, or 1,2-addition. Careful follow up of the reaction revealed that 1,2-addition initially proceeds (**B** to **C**),⁸ but it can be reversible depending on the amount of acid present.

When a stoichiometric amount of H⁺ is present in the reaction medium (0.5 equiv of H_2SO_4), the secondary amine in C will not be protonated (C to E does not take place) and 1,2-addition is reversible. However, C might undergo intramolecular TMS transfer to D.⁸ This TMS shift is reversible as well, and as a consequence, C can again be formed.⁸

Subsequently, this unstable intermediate will either revert to iminium B due to expulsion of phosphite or undergo S_N' ,

Table 3. 1,2-Addition of DMPTMS to Diunsaturated Imines

	R ¹	N ⁻ R ² P(C H	$H \qquad \begin{array}{c} P(OTMS)(OMe)_2 \\ H \\ H \\ \end{array}$			OMe OMe	
substrate	entry	R ²	DMPTMS (equiv)	H₂SO₄ (equiv)	time	Conversion to 7 (%)	Isolated Yield (%)
	1	Bn (7a1)	1	0.5	5 min	100	82
	2	n-Pr (7a2)	1	0.5	1.5 h	53	-
	3	n-Pr (7a2)	1	0.5	24 h	63	-
N ^{-R}	4	n-Pr (7a2)	2	2	24 h	90	-
	5	n-Pr (7a2)	5	2	15 min	100	83
	6	i-Pr (7a3)	1	0.5	24 h	47	-
	7	i-Pr (7a3)	5	2	15 min	100	97
	8	t-Bu (7a4)	1	0.5	48 h	63	-
	9	t-Bu (7a4)	5	2	3 h	95	-
	10	t-Bu (7a4)	5	2	6 h	95	86
	11	Bn (7b1)	1	0.5	5 min	100	87
_	12	n-Pr (7b2)	1	0.5	5 min	80	-
Ņ´ ^R	13	n-Pr (7b2)	1	0.5	30 min	100	71
	14	i-Pr (7b3)	1	0.5	30 min	57	-
3b	15	i-Pr (7b3)	1	0.5	3 h	100	68
	16	t-Bu (7b4)	1	0.5	48 h	85	-
	17	t-Bu (7b4)	5	2	1 h	87	43
	18	i-Pr (7c)	1	0.5	24 h	80	-
	19	i-Pr (7c)	5	2	15 min	100	83

Scheme 2. Proposed Mechanism for Tandem and Monophosphite Additions

yielding species G or I when excess phosphite is present. In the former case, iminium B will then undergo 1,6- or 1,4-addition, which are probably irreversible. In the case of 1,4-addition to B, compound I will then equilibrate to iminium K, which will eventually undergo 1,2-addition. In the case of 1,6-addition, compound G will be protonated in the α -position before undergoing 1,2-addition, overall resulting in a shift of the double bond. As such, no 1,4-addition can ensue. These pathways account for the observed tandem 1,6-1,2- or 1,4-1,2-phosphite addition products (Table 1). In the case where an excess of H^+ is present in the reaction medium (>0.5 equiv of H_2SO_4 , generally 2 equiv, cfr. Table 3) the initial 1,2-addition will be rendered irreversible. Compound C will immediately be protonated due to an excess of H₂SO₄ giving rise to compound E. This would result in a doubly positively charged species which is highly unlikely. Therefore, protonation and desilylation may take place simultaneously, assisted by one (as depicted) or more molecule(s) of $R_{2}^{5}SO_{4}$, yielding species **D**. After aqueous workup the 1,2-addition adduct is isolated. It must be noted that 1,2-adducts may also be isolated after reaction using 1 equiv of DMPTMS and 0.5 equiv of H₂SO₄, corroborating that 1,2addition is kinetically favored.

In summary, it is in the first place the amount of DMPTMS and H_2SO_4 that will dictate the regioselectivity of the phosphite addition. However, the intrinsic reactivity of the substrate will also differentiate between 1,6- and 1,4-addition. Temperature or reaction time do not seem to exert any effect on the regioselectivity.

Theoretical Rationalization. A computational study was performed to understand the reactivities of mono- and diunsaturated imines toward Michael-type additions of silylated phosphites. DFT calculations utilizing the M06-2X/6-31+G- $(d,p)^{50}$ level of theory implemented in the G09 program package⁵¹ have elucidated the underlying rationale for the experimentally observed regioselectivity.

Reaction mechanisms have been explored in an effort to rationalize the ease of addition of the phosphite nucleophile, $P(OTMS)(OMe)_2$, across α,β -unsaturated imines 1 and $\alpha,\beta,\gamma,\delta$ -diunsaturated imines 3 (Scheme 1). Energetics for the first phosphite addition step are illustrated in Table 4. The difference in free energy barriers for the 1,2-, 1,4-, and 1,6-phosphite additions to iminium ions of monounsaturated systems 1a, 1b and diunsaturated systems 3a and 3b are shown. The 1,2-addition is clearly the most feasible (lowest free energy of activation, ΔG^{\ddagger}) reaction for all four systems, revealing the 1,2-adduct as the kinetic product. However, it is also the most reversible type of addition (lowest barrier for reverse reaction, 20-30 kJ/mol for all systems), as inferred from the relative stabilities of the respective adducts.

Nevertheless, the highly exergonic 1,4- and 1,6-additions are also likely since they require only slightly higher activation energies than the 1,2-addition for the corresponding system but lead to remarkably more stable adducts with higher reverse reaction barriers (in the order of \sim 60 and \sim 80 kJ/mol for the 1,4- and 1,6-additions, respectively). For the initial phosphite addition step (Table 4), the 1,4-adduct is clearly the thermodynamic product for systems 1. For systems 3, while the relative stabilities of 1,4- and 1,6-adducts favor the latter due to the disruption of conjugation ensued by 1,4-addition, their respective activation energies are quite close. Hence, both adducts are expected to form, although the 1,6-adduct is the thermodynamic product. The final product, however, will be the most stable tandem diadduct. For monounsaturated system 1a Table 4. Activation (ΔG^{\ddagger}) and Reaction (ΔG_{rxn}) Free Energies (M06-2X/6-31+G(d,p), 298 K, 1 atm, in kJ/mol) for Initial 1,2-, 1,4-, and 1,6-Phosphite Addition to Iminium Ions of Mono- and Diunsaturated Imines 1 and $3^{a,b}$

"Barriers and reaction energies calculated from separate reactants, namely, the corresponding iminium ion and the silylated phosphite, P(OTMS)(OMe)₂. ^bThe identity of the N-substituent was shown to have minimal effect on the relative energetics, with similar energetics for N-*t*-Bu, N-Bn and N-*i*-Pr.

(R¹ = Ph), a slightly larger activation energy compared to **1b** (R¹ = Me) is observed for both 1,2- and 1,4-addition ($\Delta G^{\ddagger} = 23.0$ and 23.8 kJ/mol, respectively). This is understandably due to the additional conjugation brought to the system by the phenyl ring; hence, disrupting it costs more energy. Similarly, for diunsaturated system **3a**, which comprises extended conjugation with the phenyl group (R¹), 1,4- and 1,6-additions disrupting the conjugation have ~10 kJ/mol higher barriers than **3b**. Figure 1 depicts transitions state structures 1,2-, 1,4-, and 1,6-phosphite additions to the iminium ion of **3a**.

Natural population analysis $(NPA)^{52}$ and iterative Hirshfeld $(HI)^{53,54}$ atomic charges depict a clear difference between the neutral imines and their "activated" iminium counterparts (Tables 5 and 6). The iminium ions of 1 and 3 (Tables 5 and 6) show a higher positive charge on carbon C2 with both population schemes, indicating higher reactivity compared to C4 and C6 (for 3).

This is consistent with the lower barrier of formation for the 1,2-adduct indicated earlier (Table 4). Nonetheless, note that all carbons are more positive compared to their imine counterparts. For systems 3, charges on C4 and C6 are comparable, which also correlates well with the barriers calculated for attack on these carbons. Meanwhile, π -orbital LUMO coefficients (Tables 5 and 6) depict no difference among C2, C4, and C6, indicating the reaction is electrostatically driven rather than orbital controlled.

There are several possible fates for the monoaddition products of 1 and 3, as indicated in Scheme 2: (a) a TMS shift from oxygen to the neighboring nitrogen could occur for 1,2- (C to D) and 1,4-adducts (I to J), (b) an intramolecular S_N' reaction could take place in the case of the 1,2-adduct (Scheme 2, C to I), and (c) a second phosphite attack could occur for the 1,4- and 1,6-monoadducts, leading to the tandem addition products

Article

1,2-addition TS

1,4- addition TS

Figure 1. M06-2X/6-31+G(d,p)-optimized geometries for the transition state structures of 1,2-, 1,4-, and 1,6-phosphite addition to iminium ion of 3a. Critical distances in Angstroms.

Table 5. Natural Population Analysis (NPA), Iterative Hirshfeld (HI) Atomic Charges, and π -Orbital LUMO Coefficients (M06-2X/6-31+G(d,p)) for Monounsaturated Imines 1 and 3 and Their Iminium Ions

-0 -4 -2											
	NPA charges			HI charges			LUMO coefficients				
	C2	C4	C6	C2	C4	C6	C2	C4	C6		
1a	0.057	-0.198		0.207	-0.102		0.153	0.264			
1b	0.062	-0.188		0.215	0.022		0.242	0.336			
3a	0.053	-0.221	-0.202	0.203	-0.061	-0.128	0.127	0.200	0.261		
3b	0.057	-0.215	-0.191	0.208	-0.049	0.004	0.182	0.277	0.291		

Table 6. Natural Population Analysis (NPA), Iterative Hirshfeld (HI) Atomic Charges, and π -Orbital LUMO Coefficients (M06-2X/6-31+G(d,p)) for Diunsaturated Imines 1 and 3 and Their Iminium Ions

		NPA charges		HI charges			LUMO coefficients			
	C2	C4	C6	C2	C4	C6	C2	C4	C6	
1a	0.193	-0.034		0.308	0.102		0.322	0.348		
1b	0.214	-0.019		0.321	0.199		0.392	0.366		
3a	0.177	-0.075	-0.060	0.298	0.123	0.060	0.289	0.314	0.292	
3b	0.191	-0.063	-0.049	0.306	0.134	0.155	0.332	0.343	0.283	

experimentally observed (Table 1). The energetic feasibilities of all aforementioned reactions were computationally explored in order to rationalize the experimental findings.

The O-TMS to N-TMS shift was modeled for both 1,2- and 1,4-adducts of 1 and 3 (Table 7). This shift is shown to be both kinetically and thermodynamically unfavorable in all four systems. Silicon's propensity for oxygen is well known as evidenced in the high bond dissociation energies (BDE) pre-

viously reported,⁵⁵ indicating high bond strength; hence, this result is expected.

All efforts to locate the S_N' transition states for the concerted conversion of 1,2-adducts to 1,4- and 1,6-adducts failed at the DFT (M06-2X and B3LYP) level of theory. However, S_N' transition state geometries converting the 1,2- to a 1,4-adduct (C to I, Scheme 2) as well as the 1,2- to a 1,6-adduct (C to G) were located at the semiempirical level of theory (PM3, Figure 2). Thus, their existence cannot be fully refuted. The final fate of the monoaddition products is the nucleophilic attack of a second phosphite nucleophile, leading to a tandem addition product, as observed experimentally (Table 1) for systems 3.

Table 8 depicts activation and reaction free energies for 1,2phosphite attack on 1,4- as well as 1,6-adducts. Transition state geometries for 3a are shown in Figure 3. When compared to activation barriers for the initial step (Table 4) the second addition step is clearly not rate determining. Hence, the product distributions will most likely be dictated by the thermodynamic stability of the final tandem adducts rather than the intermediates and thermodynamic equilibration will prevail. Relative product stabilities (Table 9) depict a significant difference favoring the 1,2–1,4-adduct in the case of 3a, consistent with experimental results. Similarly, the product stabilities are in line with observations for 3b, which gave a 50/50 product distribution for both tandem addition products.

The combination of these experimental and theoretical results has shed new light on the precise mechanism of tandem phosphite additions (Scheme 2). After acidic activation of the linear unsaturated system, phosphite addition takes place in a 1,2-, 1,4-, or 1,6-fashion. The resulting phosphonium ion either readily collapses with concomitant loss of the TMS moiety or is expelled, after which a second phosphite attack takes place. Calculations have demonstrated that an intramolecular O-to-N TMS shift is not feasible (C to D). In contrast, it was shown

Table 7. Activation (ΔG^{\ddagger}) and Reaction (ΔG_{rxn}) Free Energies (M06-2X/6-31+G(d,p), 298 K, 1 atm, in kJ/mol) for TMS Shift from Oxygen to Nitrogen in 1,2- and 1,4-Adducts of Mono- and Diunsaturated Imines 1 and 3^a

^{*a*}O-TMS monoadducts are taken as reference.

earlier that N-to-O TMS shift does take place.⁸ However, intermolecular TMS shift is possible (C–E–D, I–J, and B–G),

Table 8. Relative Free Energies (M06-2X/6-31+G(d,p), 298 K, 1 atm, in kJ/mol) of the Transition States for the Second Phosphite Attack in the Formation of 1,4-1,2 and 1,6-1,2 Tandem Adducts of Diunsaturated Imines 3

Figure 3. Transition state structures for the second phosphite attack in the formation of 1,4-1,2 and 1,6-1,2 tandem adducts of diunsaturated imine **3a** (M06-2X/6-31+G(d,p), critical distances in Angstroms).

Table 9. Relative Product Free Energies (M06-2X/6-31+G(d,p), 298 K, 1 atm, in kJ/mol) for the Tandem 1,2-1,4-and 1,2-1,6-Addition of P(OTMS)(OMe)₂ to Mono- and Diunsaturated Imines 1 and 3

Figure 2. Transition state structures for the conversion of 1,2-adduct to 1,4- and 1,6-adducts via an S_N' pathway for 3a (PM3, critical distances in Angstroms).

assisted by one or more molecules of sulfuric acid or a TMS derivative thereof. In addition, calculations have shown that S_N' is somewhat less likely to occur, but it cannot fully be ruled out (C to I). As such, the mechanism depicted in Scheme 2 is the most plausible stream of events in tandem phosphite additions to acyclic unsaturated systems, taking into account the results of the computational analysis.

CONCLUSION

This work has expanded the scope of tandem phosphite additions to $\alpha, \beta, \gamma, \delta$ -diunsaturated imines. To the best of our knowledge, a 1,6-conjugate addition of a phosphite nucleophile has been reported for the first time. Selective mono-1,2-addition could also be obtained by controlling the stoichiometry of the reagents. The observed regioselectivities were dictated by both the electronic and the steric properties of the substrates and supported by theoretical calculations. These findings suggest that the regioselectivity of the phosphite additions is rather electrostatically driven than orbital controlled. In addition, with the aid of calculations the most comprehensive mechanism to date has been presented here, allowing us to rule out previous hypotheses.

EXPERIMENTAL SECTION

Commercially available products were used as received without any purification unless otherwise noted. Dry diethyl ether (Et₂O), tetrahydrofuran (THF), and toluene were freshly distilled from sodium/ benzophenone ketyl. Dry dichloromethane (CH₂Cl₂) was freshly distilled over calcium hydride (CaH₂). Column chromatography was performed in a glass column with silica gel (particle size 70–200 μ m, pore diameter 60 Å) using mixtures of ethyl acetate (EtOAc) and hexanes. Visualization was performed on TLC plates using UV irradiation and oxidation by a KMnO₄ solution or elemental iodine. NMR spectra were recorded on a 400 MHz spectrometer at room temperature at 400 (¹H), 100 (¹³C), and 162 MHz (³¹P) in CDCl₃ unless otherwise noted, with tetramethylsilane (TMS) as internal standard. ³¹P spectra were externally referenced to 85% H₃PO₄. All chemical shifts are expressed as parts per million (ppm). HPLC and HPLC-MS analyses were performed on a liquid chromatograph using a reversed phase column (C18 column, 50×4.6 mm, particle size 3.5μ m; C18 column, 30×4.6 mm, particle size 2.7 μ m) connected to a UV–vis detector and a mass spectrometer (ESI, 70 eV) using a mass-selective single-quadrupole detector. A mixture of 5 mM NH₄OAc in H₂O and CH₃CN was used as eluent. Preparative HPLC was performed using a reversed phase column (C18 column, 150 × 21.2 mm, particle size $5 \,\mu\text{m}$) that was thermostatized at 25 °C. The column was connected to a UV-vis variable-wavelength detector (VWD). A mixture of H₂O and CH₃CN was used as eluent, with TFA or diethylamine as additive if needed. Low-resolution mass spectra were obtained with an LC/MSD type SL mass spectrometer (ESI, 70 eV) using a mass-selective single-quadrupole detector. High-resolution mass spectra were obtained with a time-of-flight (TOF) mass spectrometer (ESI or APCI).

Synthesis of $\alpha_{,\beta_{,\gamma_{,}}\delta$ -Diunsaturated Aldehydes S1.⁴⁴ In a flamedried round-bottom flask equipped with a stirring bar a suitable $\alpha_{,\beta}$ -unsaturated aldehyde was dissolved in dry THF under an inert atmosphere. Next, (1,3-dioxolan-2-ylmethyl)triphenylphosphonium bromide (1.5 equiv) and LiOMe (2.2 equiv) were added, and the reaction mixture was heated to reflux temperature for 16 h. A solution of 2 M HCl with a volume equal to the reaction solvent was then added to the reaction mixture at room temperature and left to stir for 1 h. Afterward, the THF was evaporated in vacuo until only the aqueous phase remained. Ethyl acetate was added, and the mixture was extracted 3× using ethyl acetate. The combined organic layers were washed once using NaHCO₃, dried over MgSO₄, filtered, and concentrated in vacuo.⁴⁴ The crude product was then triturated using a 9/1 mixture of hexanes/EtOAc and filtered: the desired $\alpha_{,\beta,\gamma,\delta}$ -diunsaturated aldehyde S1 was present in the filtrate, while the residue consisted of triphenylphosphine oxide. The filtrate was concentrated in vacuo and purified using column chromatography.

(2*E*,4*E*)-5-Phenylpenta-2,4-dienal S1a.⁴⁴ Cinnamaldehyde (2.04 g, 15.4 mmol) was transformed into S1a. After column chromatography, 2.15 g was obtained (13.6 mmol, 88% yield, yellow solid). Spectral data are in accordance with reported values. R_f = 0.25 (hexanes/ EtOAc 95/5). ¹H NMR (400 MHz, CDCl₃) δ 6.28 (1H, dd, *J* = 15.1 Hz, *J* = 7.9 Hz), 7.00–7.03 (2H, m), 7.24–7.31 (1H, m), 7.33–7.41 (3H, m), 7.49–7.53 (2H, m), 9.63 (1H, d, *J* = 7.9 Hz).

(E)-3-((1R,5S)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)acrylaldehyde **S1c**. (1R)-(-)-Myrtenal (1.74 g, 11.6 mmol) was transformed into **S1c**. After column chromatography, 1.23 g was obtained as an *E*/*Z* mixture in a 93/7 ratio (6.97 mmol, 60% yield, yellow oil). Spectral data are given for the major isomer. R_f = 0.34 (hexanes/EtOAc 95/5). ¹H NMR (400 MHz, CDCl₃) δ 0.78 (3H, s), 1.16 (1H, d, *J* = 9.0 Hz), 1.35 (3H, s), 2.15–2.20 (1H, m), 2.46–2.53 (3H, m), 2.57 (1H, m), 6.06 (1H, dd, *J* = 15.6 Hz, *J* = 7.8 Hz), 6.17–6.20 (1H, m), 7.10 (1H, d, *J* = 15.6 Hz), 9.58 (1H, d, *J* = 7.8 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 20.8, 26.0, 31.1, 33.0, 37.8, 40.5, 41.4, 125.6, 136.9, 146.3, 153.2, 194.3. IR (ATR, cm⁻¹) ν_{max} : 1121, 1609, 1678, 2921. MS (ESI, pos): *m*/*z* (%) 177.1/178.1 (M + H⁺, 100/12).

Synthesis of Dimethyl Trimethylsilyl Phosphite (DMPTMS). In a flame-dried round-bottom flask equipped with a magnetic stirring bar dimethyl phosphite (DMP) was dissolved in dry dichloromethane (0.2 M) under a N₂ atmosphere. Next, the flask was cooled to 0 °C using an ice bath before Et_3N (1.2 equiv) was added. Then TMSCl (1.1 equiv) was added in a dropwise fashion, and the reaction mixture was kept at 0 °C for 30 min. Afterward the resulting suspension was filtered using an oven-dried filter and flame-dried glassware (which was allowed to cool in a desiccator prior to use). The residue was washed using dry diethyl ether, and the filtrate was concentrated in vacuo. The resulting suspension was again filtered using an oven-dried filter and flame-dried glassware and washed using dry diethyl ether. The filtrate was concentrated in vacuo. This filtration/concentration procedure was repeated until no more salt was visibly present (typically 3×) and a clear colorless solution obtained, typically in 75% yield. The resulting DMPTMS was stored in a flame-dried flask under a N2 atmosphere in the freezer at -18 °C and could be kept as such without significant hydrolysis for several months. Prior to use, the exact concentration was determined using $^1\mbox{H}$ and $^{31}\mbox{P}$ NMR spectroscopy (relevant signals: DMPTMS ¹H NMR (400 MHz, CDCl₃) δ 3.40 (6H, d, ³J_{HP} = 10.4 Hz) and ³¹P NMR (162 MHz, CDCl₃) δ 128.1; DMP ¹H NMR (400 MHz, CDCl₃) δ 3.72 (6H, d, ${}^{3}J_{\rm HP}$ = 11.9 Hz) and ${}^{31}{\rm P}$ NMR (162 MHz, CDCl₃) δ 10.4).

Synthesis of *α*,*β*,*γ*,*δ*-**Diunsaturated lmines 3.** In a round-bottom flask equipped with a magnetic stirring bar, a diunsaturated aldehyde was dissolved in dichloromethane (0.2 M). Then 2 equiv of MgSO₄ and 1 equiv of a suitable amine were added to the flask. The mixture was heated to reflux temperature, and the reaction progress was monitored using ¹H NMR spectroscopy. After consumption of all starting material, the MgSO₄ was filtered off and washed three times using dichloromethane. The filtrate was concentrated in vacuo, and the resulting crude was used as such in the next step if, according to ¹H NMR spectroscopy, no hydrolysis had taken place during workup.

Synthesis of Phosphonylated α -Aminophosphonates 5 and 6. In a flame-dried round-bottom flask equipped with a magnetic stirring bar $\alpha,\beta,\gamma,\delta$ -diunsaturated imines 3 were dissolved in dry dichloromethane under a N₂ atmosphere. Next, an appropriate amount of DMPTMS was added using a syringe, and the reaction mixture was heated to reflux temperature. H₂SO₄ was then added via a syringe in a dropwise fashion. The reaction progress was monitored using HPLC-MS, and after complete consumption of the starting material, the reaction mixture was poured into 10 mL of a 2 M HCl solution. Diethyl ether was added, and the mixture was extracted thrice using diethyl ether. The resulting aqueous layer was then rendered alkaline to a pH of 14 using a 2 M NaOH solution. Next, the alkaline aqueous phase was extracted thrice using ethyl acetate (3 × 10 mL). The combined ethyl acetate fractions were dried over MgSO₄, filtered, and concentrated in vacuo, yielding the crude desired phosphonylated

 α -aminophosphonates. The regio- and diastereomers were separated using HPLC in order to obtain analytically pure samples.

A 328 mg (1.33 mmol) amount of **3a1** was converted into **5a1** using 2 equiv of DMPTMS and 0.5 equiv of H_2SO_4 at reflux temperature. After workup, 478 mg of crude product was obtained as diastereomers in a 3/7 ratio (1.02 mmol, 77% yield, yellow oil). The 1,4–1,2-adducts were separated using preparative HPLC (reversed-phase C18 column, water/acetonitrile eluent). Two fractions were isolated for characterization.

Tetramethyl (1-(Benzylamino)-5-phenylpent-4-ene-1,3-diyl)(E)bis(phosphonate) 5a1 (Diastereomer 1). ¹H NMR (400 MHz, CDCl₃) δ 1.89–2.05 (1H, m), 2.29–2.41 (1H, m), 3.12 (1H, ddd, ${}^{2}J_{\rm HP}$ = 13.7 Hz, J = 6.9 Hz, J = 6.9 Hz), 3.22 (1H, dddd, ${}^{2}J_{\rm HP}$ = 21.9 Hz, J = 9.4 Hz, J = 9.4 Hz, J = 5.1 Hz), 3.73 (3H, d, ${}^{3}J_{HP} = 10.6$ Hz), 3.74 (3H, d, ${}^{3}J_{HP} = 10.7 \text{ Hz}$), 3.76 (3H, d, ${}^{3}J_{HP} = 10.5 \text{ Hz}$), 3.81 (3H, d, ${}^{3}J_{HP} = 10.4 \text{ Hz}$), 3.88 (2H, br s), 6.04 (1H, ddd, J = 15.8 Hz, J = 9.3 Hz, ${}^{3}J_{HP} = 10.4 \text{ Hz}$) 6.4 Hz), 6.53 (1H, dd, J = 15.8 Hz, ${}^{4}J_{HP} = 5.0$ Hz), 7.16–7.32 (10H, m). ¹³C NMR (100 MHz, CDCl₃) δ 29.8 (dd, ²*J*_{CP} = 3.9 Hz, ²*J*_{CP} = 3.9 Hz), 38.5 (dd, ${}^{1}J_{CP} = 138.7$ Hz, ${}^{3}J_{CP} = 6.6$ Hz), 51.4 (dd, ${}^{1}J_{CP} = 149.0$ Hz, ${}^{3}J_{CP}$ = 13.3 Hz), 51.7 (d, ${}^{3}J_{CP}$ = 7.2 Hz), 52.8 (d, ${}^{2}J_{CP}$ = 7.2 Hz), 53.2 (d, ${}^{2}J_{CP}$ = 7.1 Hz), 53.4 (d, ${}^{2}J_{CP}$ = 7.2 Hz), 123.8 (d, ${}^{2}J_{CP}$ = 10.7 Hz), 126.41, 126.42, 127.1, 127.8, 128.35 $(2 \times CH_{ar})$, 128.39 $(2 \times CH_{ar})$, 128.6 $(2 \times CH_{ar})$ CH_{ar}), 134.6 (d, ${}^{3}J_{CP}$ = 13.8 Hz), 136.5 (d, ${}^{4}J_{CP}$ = 3.5 Hz), 139.5. ${}^{31}P$ NMR (162 MHz, CDCl₃) δ 29.91, 30.47. IR (ATR, cm⁻¹) ν_{max} : 1024, 1223, 1452, 3395. MS (ESI, pos): m/z (%) 358.3/359.3 (M - $[P(O)(OMe)_2]^-$, 60/10), 468.3/469.3 (M + H⁺, 100/20). HRMS: m/zcalcd for $C_{22}H_{31}NO_6P_2 + H^+$ 468.1699, found 468.1711.

Tetramethyl (1-(Benzylamino)-5-phenylpent-4-ene-1,3-diyl)(E)-bis(phosphonate) **5a1** (Diastereomer 2). ¹H NMR (400 MHz, CDCl₃) δ 1.88 (1H, br s), 1.94–2.10 (2H, m), 2.91 (1H, ddd, ²J_{HP} = 11.5 Hz, J = 11.5 Hz, J = 3.2 Hz), 3.24 (dddd, ${}^{2}J_{HP} = 20.8$ Hz, J = 10.4 Hz, ${}^{3}J_{\rm HP} = 10.4$ Hz), 3.79 (3H, d, ${}^{3}J_{\rm HP} = 10.4$ Hz), 4.05 (1H, dd, J = 13.1 Hz, ${}^{4}J_{\rm HP} = 1.4$ Hz), 5.91 (1H, ddd, J = 15.8 Hz, iJ = 9.8 Hz, ${}^{3}J_{\rm HP} = 6.2$ Hz), 6.2 (1H, dd, J = 15.8 Hz, ${}^{4}J_{\rm HP} = 4.8$ Hz), 7.20–7.36 (10H, m). ${}^{13}C$ NMR (100 MHz, CDCl₃) δ 29.7 (dd, ²J_{CP} = 8.0 Hz, ²J_{CP} = 2.7 Hz), 37.7 (dd, ${}^{1}J_{CP} = 140.5 \text{ Hz}, {}^{3}J_{CP} = 14.7 \text{ Hz}), 50.6 \text{ (dd, } {}^{1}J_{CP} = 141.6 \text{ Hz}, {}^{3}J_{CP} = 16.6 \text{ Hz}$ Hz), 51.9, 52.6 (d, ${}^{2}J_{CP}$ = 7.3 Hz), 52.8 (d, ${}^{2}J_{CP}$ = 7.3 Hz), 53.3 (d, ${}^{2}J_{CP}$ = 7.1 Hz), 122.9 (d, ${}^{2}J_{CP}$ = 10.2 Hz), 126.40, 126.42, 127.3, 127.8, 128.4, 128.5, 128.6, 135.5 (d, ${}^{3}J_{CP} = 14.1 \text{ Hz}$), 136.4 (d, ${}^{4}J_{CP} = 3.5 \text{ Hz}$), 140.1. ^{31}P NMR (162 MHz, CDCl₃) δ 30.92 (d, $^4J_{\text{PP}}$ = 10.2 Hz), 31.50 (d, ${}^{4}J_{\rm PP}$ = 10.2 Hz). IR (ATR, cm⁻¹) $\nu_{\rm max}$: 1024, 1223, 1641, 3394. MS (ESI, pos): m/z (%) 358.3/359.3 (M - [P(O)(OMe)₂]⁻, 90/20), 468.3/ 469.3 (M + H⁺, 100/20). HRMS: m/z calcd for $C_{22}H_{31}NO_6P_2 + H^+$ 468.1699, found 468.1726.

A 233 mg (1.17 mmol) amount of **3a2** was converted into **5a2** using 2 equiv of DMPTMS and 0.5 equiv of H_2SO_4 at reflux temperature. After workup, 347 mg of crude product was obtained as diastereomers in a 3/7 ratio (0.83 mmol, 71% yield, yellow oil). The 1,4–1,2-adducts were separated using preparative HPLC (reversed-phase C18 column, water/ acetonitrile eluent). Two fractions were isolated for characterization.

Tetramethyl (5-Phenyl-1-(propylamino)pent-4-ene-1,3-diyl)(E)bis(phosphonate) **5a2** (Diastereomer 1). ¹H NMR (400 MHz, CDCl₃) δ 0.87 (3H, t, *J* = 7.3 Hz), 1.12 (1H, br), 1.42 (2H, sextet, *J* = 7.3 Hz), 1.85–2.01 (1H, m), 2.25–2.39 (1H, m), 2.64 (2H, t, *J* = 7.3 Hz), 3.07 (1H, ddd, ²*J*_{HP} = 13.2 Hz, *J* = 6.9 Hz, *J* = 6.9 Hz), 3.24 (dddd, ²*J*_{HP} = 21.9 Hz, *J* = 9.4 Hz, *J* = 9.4 Hz, *J* = 5.2 Hz), 3.75 (3H, d, ³*J*_{HP} = 10.6 Hz), 3.76 (3H, d, ³*J*_{HP} = 10.7 Hz), 3.78 (3H, d, ³*J*_{HP} = 10.6 Hz), 3.81 (3H, d, ³*J*_{HP} = 10.4 Hz), 6.11 (1H, ddd, *J* = 15.9 Hz, *J* = 9.5 Hz, ³*J*_{HP} = 6.4 Hz), 6.60 (1H, dd, *J* = 15.9 Hz, ⁴*J*_{HP} = 5.0 Hz), 7.25 (1H, dd, *J* = 7.4 Hz), 7.32 (2H, dd, *J* = 7.4 Hz, *J* 7.38 (2H, d, *J* = 7.4 Hz), 1³C NMR (100 MHz, CDCl₃) δ 11.6, 23.4, 29.8 (dd, ²*J*_{CP} = 4.3 Hz, ³*J*_{CP} = 4.3 Hz), 38.5 (dd, ¹*J*_{CP} = 138.6 Hz, ³*J*_{CP} = 6.9 Hz), 49.9 (d, ³*J*_{CP} = 7.2 Hz), 52.5 (dd, ¹*J*_{CP} = 10.7 Hz), 126.35, 126.37, 127.8, 128.6 (2 × CH_{ar}), 134.5 (d, ³*J*_{CP} = 13.9 Hz), 136.6 (d, ⁴*J*_{CP} = 3.2 Hz). IR (ATR, cm⁻¹) ν_{max} : 1016, 1230, 1647, 2955. ³¹P NMR (162 MHz, CDCl₃) δ 30.09, 30.53. MS (ESI, pos): m/z (%) 310.3/311.3 (M – [P(O)(OMe)₂]⁻, 100/20), 420.3/421.3 (M + H⁺, 90/20). HRMS: m/z calcd for C₁₈H₃₁NO₆P₂ + H⁺ 420.1699, found 420.1698.

Tetramethyl (5-Phenyl-1-(propylamino)pent-4-ene-1,3-diyl)(E)bis(phosphonate) 5a2 (Diastereomer 2). ¹H NMR (400 MHz, $CDCl_3$) δ 0.94 (3H, t, J = 7.4 Hz), 1.45 (2H, dqd, J = 9.0 Hz, J = 7.4 Hz, J = 7.1 Hz), 1.93–2.10 (2H, m), 2.47 (1H, dtd, J = 11.0 Hz, J = 7.1 Hz, J = 1.3 Hz), 2.82–2.90 (2H, m), 3.35 (1H, dddd, ${}^{2}J_{HP} = 20.6$ Hz, J = 10.6 Hz, J = 10.2 Hz, J = 2.6 Hz), 3.74-3.75 (6H, m), 3.76-3.77(6H, m), 6.01 (1H, ddd, J = 15.7 Hz, J = 9.8 Hz, ${}^{3}J_{HP} = 6.1 Hz$), 6.56 (1H, dd, J = 15.7 Hz, ${}^{4}J_{HP} = 4.9$ Hz), 7.25 (1H, dd, J = 7.4 Hz, J = 7.4 Hz), 7.32 (2H, dd, J = 7.4 Hz, J = 7.4 Hz), 7.38 (2H, d, J = 7.4 Hz).¹³C NMR (100 $\begin{array}{l} (211, dd, j = 7.4 \ Hz, j = 1.9 \ Hz, j = 7.4 \ Hz, j = 1.9 \ Hz, j = 7.4 \ Hz, j = 1.9 \ Hz, j = 7.4 \ Hz,$ (d, ${}^{2}J_{CP} = 7.0 \text{ Hz}$), 53.3 (d, ${}^{2}J_{CP} = 6.8 \text{ Hz}$), 123.1 (d, ${}^{2}J_{CP} = 10.3 \text{ Hz}$), 126.37, 126.39, 127.9, 128.6 ($2 \times CH_{ar}$), 135.6 (d, ${}^{3}J_{CP}$ = 14.0 Hz), 136.5 (d, ${}^{4}J_{CP} = 3.1$ Hz). ${}^{31}P$ NMR (162 MHz, CDCl₃) δ 31.22 (d, ${}^{4}J_{PP} =$ 9.8 Hz), 31.64 (d, ${}^{4}J_{PP}$ = 9.8 Hz). IR (ATR, cm⁻¹) ν_{max} : 1016, 1231, 1449, 2955. MS (ESI, pos): m/z (%) 310.3/311.3 (M – [P(O)- $(OMe)_{2}^{-}, 100/20), 420.3/421.3 (M + H^{+}, 70/10).$ HRMS: m/z calcd for $C_{18}H_{31}NO_6P_2 + H^+$ 420.1699, found 420.1733.

A 123 mg (0.62 mmol) amount of **3a3** was converted into **5a3** using 2 equiv of DMPTMS and 0.5 equiv of H_2SO_4 at reflux temperature. After workup, 214 mg of crude product was obtained as diastereomers in a 3/7 ratio (0.51 mmol, 82% yield, yellow oil). The 1,4–1,2-adducts were separated using preparative HPLC (reversed-phase C18 column, water/ acetonitrile eluent). Two fractions were isolated for characterization.

Tetramethyl (1-(Isopropylamino)-5-phenylpent-4-ene-1,3-diyl)-(E)-bis(phosphonate) **5a3** (Diastereomer 1). ¹H NMR (400 MHz, $CDCl_3$) δ 0.96 (3H, d, J = 6.2 Hz), 1.02 (3H, d, J = 6.2 Hz), 1.80-1.97 (1H, m), 2.25–2.38 (1H, m), 3.00 (1H, septet, J = 6.2 Hz), 3.13 (1H, ddd, ${}^{2}J_{HP} = 15.1$ Hz, J = 8.5 Hz, J = 5.4 Hz), 3.25 (1H, dddd, ${}^{2}J_{HP} =$ 22.0 Hz, J = 9.5 Hz, J = 9.5 Hz, J = 4.7 Hz), 3.75 (3H, d, ${}^{3}J_{HP} = 10.7$ Hz), 3.76 (3H, d, ${}^{3}J_{HP}$ = 10.7 Hz), 3.78 (3H, d, ${}^{3}J_{HP}$ = 10.6 Hz), 3.81 (3H, d, ${}^{3}J_{\rm HP}$ = 10.3 Hz), 6.09 (1H, ddd, J = 15.8 Hz, J = 9.5 Hz, ${}^{3}J_{\rm HP}$ = 6.4 Hz), 6.60 (1H, dd, J = 15.9 Hz, ${}^{4}J_{HP} = 5.1$ Hz), 7.25 (1H, dd, J = 7.8 Hz, J = 7.8Hz), 7.32 (2H, dd, J = 7.4 Hz, J = 7.4 Hz), 7.38 (2H, d, J = 7.5 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 22.8, 23.1, 30.3 (dd, ²J_{CP} = 4.3 Hz, ²J_{CP} = 4.3 Hz), 38.4 (dd, ${}^{1}J_{CP} = 138.7$ Hz, ${}^{3}J_{CP} = 5.3$ Hz), 46.4 (d, ${}^{3}J_{CP} = 9.1$ Hz), 49.5 (dd, ${}^{1}J_{CP} = 152.2$ Hz, ${}^{3}J_{CP} = 13.7$ Hz), 52.7 (d, ${}^{2}J_{CP} = 7.3$ Hz), 52.8 (d, ${}^{2}J_{CP} = 7.1$ Hz), 53.4 (d, ${}^{2}J_{CP} = 7.1$ Hz), 53.5 (d, ${}^{2}J_{CP} = 7.1$ Hz), 123.8 (d, ${}^{2}J_{CP} = 10.8$ Hz), 126.3, 126.4, 127.8, 128.6 (d ${}^{2}J_{CP} = 10.8$ Hz), 136.6 (d, ${}^{4}J_{CP} = 3.1$ Hz). ${}^{31}P$ NMR (162 MHz), 134.9 (d, ${}^{3}J_{CP} = 13.9$ Hz), 136.6 (d, ${}^{4}J_{CP} = 3.1$ Hz). ${}^{31}P$ NMR (162 MHz, CDCl₃) δ 30.16, 30.54. IR (ATR, cm⁻¹) ν_{max} : 1016, 1233, 2957, 3458. MS (ESI, pos): m/z (%) 310.3/311.3 (M - [P(O)(OMe)₂]⁻, 100/20), 420.3/ 421.3 (M + H⁺, 85/20). HRMS: m/z calcd for $C_{18}H_{31}NO_6P_2 + H^+$ 420.1699, found 420.1693.

Tetramethyl (1-(lsopropylamino)-5-phenylpent-4-ene-1,3-diyl)-(E)-bis(phosphonate) **5a3** (Diastereomer 2). ¹H NMR (400 MHz, CDCl₃) δ 0.92 (3H, d, *J* = 6.0 Hz), 1.04 (3H, d, *J* = 6.0 Hz), 1.85–1.95 (1H, m), 2.05–2.15 (1H, m), 2.94 (1H, ddd, ²*J*_{HP} = 11.6 Hz, *J* = 11.6 Hz, *J* = 2.5 Hz), 3.14 (1H, septet × d, *J* = 6.1 Hz, ³*J*_{HP} = 2.7 Hz), 3.32–3.43 (1H, m), 3.74–3.78 (12H, m), 6.00 (1H, ddd, *J* = 15.6 Hz, *J* = 9.9 Hz, ³*J*_{HP} = 5.8 Hz), 6.58 (1H, dd, *J* = 15.9 Hz, ⁴*J*_{HP} = 5.0 Hz), 7.25 (1H, dd, *J* = 7.1 Hz), 7.32 (2H, dd, *J* = 7.4 Hz), 7.38 (2H, d, *J* = 7.4 Hz), ¹³C NMR (100 MHz, CDCl₃) δ 22.4, 24.1, 30.0 (dd, ²*J*_{CP} = 7.6 Hz, ²*J*_{CP} = 2.5 Hz), 37.6 (dd, ¹*J*_{CP} = 141.6 Hz, ³*J*_{CP} = 12.3 Hz), 46.5, 48.7 (dd, ¹*J*_{CP} = 143.5 Hz, ³*J*_{CP} = 7.2 Hz), 53.3 (d, ²*J*_{CP} = 7.0 Hz), 123.2 (d, ²*J*_{CP} = 10.7 Hz), 126.34, 126.36, 127.8, 128.6 (2 × CH_{ar}), 135.6 (d, ³*J*_{CP} = 13.4 Hz), 136.5 (d, ⁴*J*_{CP} = 3.5 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 31.22 (d, ⁴*J*_{PP} = 10.3 Hz), 31.45 (d, ⁴*J*_{PP} = 10.3 Hz). IR (ATR, cm⁻¹) ν_{max} : 1016, 1232, 2956, 3458. MS (ESI, pos): *m*/*z* (%) 310.3/311.3 (M – [P(O)(OMe)₂]⁻, 100/15), 420.3/421.3 (M + H⁺, 60/10). HRMS: *m*/*z* calcd for C₁₈H₃₁NO₆P₂ + H⁺ 420.1699, found 420.1693.

A 142 mg (0.67 mmol) amount of **3a4** was converted into **5a4** using 2 equiv of DMPTMS and 0.5 equiv of H_2SO_4 at reflux temperature. After workup, 211 mg of crude product was obtained as diastereomers in a 1/1 ratio (0.49 mmol, 73% yield, yellow oil). The 1,4–1,2-adducts were

separated using preparative HPLC (reversed-phase C18 column, water/ acetonitrile eluent). Two fractions were isolated for characterization.

Tetramethyl (1-(tert-Butylamino)-5-phenylpent-4-ene-1,3-diyl)-(E)-bis(phosphonate) 5a4 (Diastereomer 1). ¹H NMR (400 MHz, CDCl₃) & 1.05 (9H), 1.81-1.99 (1H, m), 2.30-2.43 (1H, m), 3.08 (1H, ddd, ${}^{2}J_{HP}$ = 17.0 Hz, J = 11.1 Hz, J = 3.2 Hz), 3.31 (1H, dddd, ${}^{2}J_{HP}$ = 21.7 Hz, J = 12.2 Hz, J = 9.6 Hz, J = 2.6 Hz), 3.74 (3H, d, ${}^{3}J_{HP} = 10.6$ Hz), $3.77 (6H, d, {}^{3}J_{HP} = 10.7 Hz), 3.84 (3H, d, {}^{3}J_{HP} = 10.2 Hz), 6.09 (1H, ddd, 3H, d, {}^{3}J_{HP} = 10.2 Hz), 6.09 (1H, ddd, 3H, d, {}^{3}J_{HP} = 10.2 Hz), 6.09 (1H, ddd, {}^{3}J_{HP} = 10.2 Hz), 6.09 (1H, {}^{3}J_{HP} =$ J = 15.9 Hz, J = 9.7 Hz, ${}^{3}J_{HP} = 6.5$ Hz), 6.64 (1H, dd, J = 15.9 Hz, ${}^{4}J_{HP} = 15.9$ Hz, ${}^{4}J_{H$ 4.9 Hz), 7.26 (1H, dd, J = 7.1 Hz, J = 7.1 Hz), 7.33 (2H, dd, J = 7.4 Hz, J = 7.4 Hz), 7.40 (1H, d, J = 7.4 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 29.6, 33.5 (dd, ${}^{2}J_{CP}$ = 4.7 Hz, ${}^{2}J_{CP}$ = 3.8 Hz), 38.9 (d, ${}^{1}J_{CP}$ = 139.1 Hz), 46.7 $(dd, {}^{1}J_{CP} = 160.6 \text{ Hz}, {}^{3}J_{CP} = 17.5 \text{ Hz}), 52.0 (d, {}^{3}J_{CP} = 10.1 \text{ Hz}), 52.6 (d, {}^{2}J_{CP} = 7.5 \text{ Hz}), 52.8 (d, {}^{2}J_{CP} = 7.3 \text{ Hz}), 53.4 (d, {}^{2}J_{CP} = 6.9 \text{ Hz}), 54.3 (d, {}^{2}J_{CP} = 7.5 \text{ Hz}), 54.5 (d, {}^{$ ${}^{2}J_{CP}$ = 7.4 Hz), 123.3 (d, ${}^{2}J_{CP}$ = 10.8 Hz), 126.37, 126.39, 127.8, 128.6 $(2 \times CH_{ar})$, 135.7 (d, ${}^{3}J_{CP} = 14.5 \text{ Hz}$), 136.5 (d, ${}^{4}J_{CP} = 3.5 \text{ Hz}$). ${}^{31}P$ NMR (162 MHz, CDCl₃) δ 30.10, 30.38. IR (ATR, cm⁻¹) ν_{max} : 1015, 1221, 1450, 2957. MS (ESI, pos): m/z (%) 324.3/325.3 (M - [P(O)- $(OMe)_2$]⁻, 70/10), 434.3/435.3 (M + H⁺, 100/20). HRMS: *m*/*z* calcd for $C_{19}H_{33}NO_6P_2 + H^+ 434.1856$, found 434.1850.

Tetramethyl (1-(tert-Butylamino)-5-phenylpent-4-ene-1,3-diyl)-(E)-bis(phosphonate) 5a4 (Diastereomer 2). ¹H NMR (400 MHz, $CDCl_3$) δ 1.09 (9H), 1.86 (1H, br s), 1.95–2.06 (1H, m), 2.11–2.22 (1H, m), 3.16-3.23 (1H, m), 3.36 $(1H, dddd, {}^{2}J_{HP} = 23.0$ Hz, J = 9.3 Hz, $J = 9.0 \text{ Hz}, J = 4.0 \text{ Hz}), 3.75 (3\text{H}, \text{d}, {}^{3}J_{\text{HP}} = 10.4 \text{ Hz}), 3.76 (3\text{H}, \text{d}, {}^{3}J_{\text{HP}} =$ 10.9 Hz), 3.77 (3H, d, ${}^{3}J_{HP}$ = 9.8 Hz), 3.79 (3H, d, ${}^{3}J_{HP}$ = 10.6 Hz), 6.07 (1H, ddd, J = 15.8 Hz, J = 9.0 Hz, ${}^{3}J_{HP} = 5.9$ Hz), 6.59 (1H, dd, J = 16.0 Hz, ${}^{4}J_{HP} = 5.4$ Hz), 7.25 (1H, dd, J = 7.5 Hz, J = 7.5 Hz), 7.32 (2H, dd, J = 7.6 Hz, J = 7.6 Hz), 7.38 (1H, d, J = 7.4 Hz).¹³C NMR (100 MHz, CDCl₃) δ 30.3, 32.2 (dd, ²*J*_{CP} = 7.3 Hz, ²*J*_{CP} = 3.0 Hz), 37.4 (dd, ¹*J*_{CP} = 138.0 Hz, ${}^{3}J_{CP} = 10.2$ Hz), 47.3 (dd, ${}^{1}J_{CP} = 151.4$ Hz, ${}^{3}J_{CP} = 14.5$ Hz), 51.3, 52.8 (d, ${}^{2}J_{CP} = 7.5$ Hz), 52.9 (d, ${}^{2}J_{CP} = 7.1$ Hz), 53.3 (d, ${}^{2}J_{CP} = 7.1$ Hz), 53.4 (d, ${}^{2}J_{CP} = 7.5$ Hz), 52.9 (d, ${}^{2}J_{CP} = 7.1$ Hz), 53.3 (d, ${}^{2}J_{CP} = 7.5$ Hz), 52.9 (d, ${}^{2}J_{CP} = 7.1$ Hz), 53.3 (d, ${}^{2}J_{CP} = 7.5$ Hz), 52.9 (d, ${}^{2}J_{CP} = 7.1$ Hz), 53.3 (d, ${}^{2}J_{CP} = 7.5$ Hz), 52.9 (d, ${}^{2}J_{CP} = 7.1$ Hz), 53.3 (d, ${}^{2}J_{CP} = 7.5$ Hz), 53.3 (d, ${}^$ 6.9 Hz), 53.4 (d, ${}^{2}J_{CP} = 7.5$ Hz), 124.1 (d, ${}^{2}J_{CP} = 11.4$ Hz), 126.34, 126.35, 127.8, 128.6 (2 × CH_{ar}), 134.7 (d, ${}^{3}J_{CP} = 13.3$ Hz), 136.6 (d, ${}^{4}J_{CP} = 3.7$ Hz). ${}^{31}P$ NMR (162 MHz, CDCl₃) δ 30.60 (d, ${}^{4}J_{PP} =$ 6.5 Hz), 31.09 (d, ${}^{4}J_{PP}$ = 6.5 Hz). IR (ATR, cm⁻¹) ν_{max} : 1014, 1220, 1450, 2956. MS (ESI, pos): m/z (%) 324.3/325.3 (M - [P(O)- $(OMe)_2$]⁻, 100/20), 434.3/435.3 (M + H⁺, 60/10). HRMS: *m*/*z* calcd for C₁₉H₃₃NO₆P₂ + H⁺ 434.1856, found 434.1852.

A 155 mg (0.84 mmol) amount of **3b1** was converted into **5b1** and **6b1** using 2 equiv of DMPTMS and 0.5 equiv of H_2SO_4 . After workup, 255 mg of crude product was obtained as diastereomers (0.63 mmol, 75% yield, yellow oil, ratio **5**/**6** = 1/1). The 1,6–1,2-adducts and 1,4–1,2-adducts were separated using preparative HPLC (reversed-phase C18 column, water/acetonitrile eluent). Three fractions were isolated for characterization.

Tetramethyl (1-(Benzylamino)hex-4-ene-1,3-diyl)(E)-bis(phosphonate) **5b1** (Diastereomer 1, 4/1 E/Z mixture [cfr. determination of E/Z stereochemistry based on the ¹³C shift of a vinylic CH_3],⁵⁶ spectral data of the major isomer). ¹H NMR (400 MHz, CDCl₃) δ 1.66 (3H, dd, J = 6.9 Hz, ${}^{5}J_{HP} = 4.9$ Hz), 1.70 (1H, br s), 1.72–1.90 (1H, m), 2.16–2.31 (1H, m), 2.91–3.03 (1H, m), 3.06 $(1H, ddd, {}^{2}J_{HP} =$ 13.6 Hz, J = 7.4 Hz, J = 6.2 Hz), 3.72 (6H, d, ${}^{3}J_{HP} = 10.1$ Hz), 3.76 (3H, d, ${}^{3}J_{\rm HP}$ = 10.5 Hz), 3.81 (3H, d, ${}^{3}J_{\rm HP}$ = 10.4 Hz), 3.88 (2H, s), 5.24–5.33 (1H, m), 5.56-5.65 (1H, m), 7.22-7.27 (1H, m), 7.30-7.34 (4H, m). ¹³C NMR (100 MHz, CDCl₃) δ 18.1 (d, ⁴ J_{CP} = 2.3 Hz), 29.6 (dd, ² J_{CP} = 4.4 Hz, ${}^{2}J_{CP}$ = 4.4 Hz), 37.8 (dd, ${}^{1}J_{CP}$ = 138.8 Hz, ${}^{3}J_{CP}$ = 6.5 Hz), 51.2 $(dd, {}^{1}J_{CP} = 150.0 \text{ Hz}, {}^{3}J_{CP} = 13.4 \text{ Hz}), 51.6 (d, {}^{3}J_{CP} = 7.5 \text{ Hz}), 52.6 (d, {}^{2}J_{CP} = 9.4 \text{ Hz}), 52.7 (d, {}^{2}J_{CP} = 9.4 \text{ Hz}), 53.18 (d, {}^{2}J_{CP} = 7.7 \text{ Hz}), 53.21 ($ ${}^{2}J_{\rm CP}$ = 7.0 Hz), 124.9 (d, ${}^{2}J_{\rm CP}$ = 10.0 Hz), 127.2, 128.4 (4 × CH_{ar}), 131.0 $(d_{1}^{3}J_{CP} = 13.7 \text{ Hz}), 139.7.^{31}\text{P} \text{ NMR} (162 \text{ MHz}, \text{CDCl}_{3}) \delta 30.12, 31.5. \text{ IR}$ $(ATR, cm^{-1}) \nu_{max}$: 1016, 1222, 1453, 1641, 3428. MS (ESI, pos): m/z (%) 296.2/297.2 (M - $[P(O)(OMe)_2]^-$, 100/18), 406.3/407.3 (M + H⁺, 65/10). HRMS: m/z calcd for $C_{17}H_{29}NO_6P_2 + H^+$ 406.1543, found 406.1551.

Tetramethyl (1-(Benzylamino)hex-4-ene-1,3-diyl)(E)-bis(phosphonate) **5b1** (Diastereomer 2, E). ¹H NMR (400 MHz, CDCl₃) δ 1.60 (3H, ddd, *J* = 6.5 Hz, ⁵*J*_{HP} = 5.2 Hz, *J* = 1.4 Hz), 1.82–1.93 (3H, m), 2.86–2.93 (1H, m), 2.95–3.07 (1H, m), 3.72 (6H, d, ³*J*_{HP} = 10.6 Hz), 3.78 (1H, dd, *J* = 12.7 Hz, ⁴*J*_{HP} = 1.4 Hz), 3.79 (3H, d,

³*J*_{HP} = 10.6 Hz), 3.80 (3H, d, ³*J*_{HP} = 10.6 Hz), 4.03 (1H, dd, *J* = 12.7 Hz, ⁴*J*_{HP} = 1.5 Hz), 5.09–5.17 (1H, m), 5.25–5.35 (1H, m), 7.23–7.28 (1H, m), 7.30–7.35 (4H, m). ¹³C NMR (100 MHz, CDCl₃) δ 18.2 (d, ⁴*J*_{CP} = 2.2 Hz), 29.5 (²*J*_{CP} = 7.6 Hz, ²*J*_{CP} = 2.3 Hz), 37.1 (dd, ¹*J*_{CP} = 141.0 Hz, ³*J*_{CP} = 14.2 Hz), 50.3 (dd, ¹*J*_{CP} = 142.4 Hz, ³*J*_{CP} = 16.1 Hz), 51.9, 52.59 (d, ²*J*_{CP} = 7.3 Hz), 52.64 (d, ²*J*_{CP} = 7.0 Hz), 52.8 (d, ²*J*_{CP} = 7.4 Hz), 53.1 (d, ²*J*_{CP} = 7.1 Hz), 123.9 (d, ³*J*_{CP} = 14.0 Hz), 140.1. ³¹P NMR (162 MHz, CDCl₃) δ 31.19 (d, ⁴*J*_{PP} = 11.5 Hz), 32.51 (d, ⁴*J*_{PP} = 11.5 Hz). IR (ATR, cm⁻¹) ν_{max} : 1017, 1222, 1454, 3428. MS (ESI, pos): *m/z* (%) 296.2/297.2 (M – [P(O)(OMe)₂]⁻, 100/18), 406.3/407.3 (M + H⁺, 45/10). HRMS: *m/z* calcd for C₁₇H₂₉NO₆P₂ + H⁺ 406.1543, found 406.1563.

Tetramethyl (1-(Benzylamino)hex-3-ene-1,5-diyl)(E)-bis(phosphonate) 6b1 (2 Diastereomers [d1 and d2], 1/1 Mixture). ¹H NMR (400 MHz, CDCl₃) δ 1.26 (3H, dd, ³*J*_{HP} = 7.0 Hz, *J* = 7.0 Hz, d1), 1.30 (3H, dd, ${}^{3}J_{HP} = 7.0$ Hz, J = 7.0 Hz, d2), 2.00 (2H, br s, d1 + d2), 2.32-2.43 (2H, m, d1 + d2), 2.51-2.75 (4H, m, d1 + d2), 2.96-3.00 (2H, m, d1 + d2), 3.67-3.73 (12H, m, d1 + d2), 3.77-3.82 (12H, m, d1 + d2), 3.86-3.96 (4H, m, d1 + d2), 5.52-5.64 (4H, m, d1 + d2), 7.22-7.35 (10H, m, d1 + d2). ¹³C NMR (100 MHz, CDCl₃) δ 13.7 (d, ²J_{CP} = 5.9 Hz, d1 or d2), 13.8 (d, ${}^{2}J_{CP}$ = 5.9 Hz, d1 or d2), 32.8 (d1 or d2), 32.9 (d1 or d2), 35.0 (d, ${}^{1}J_{CP}$ = 139.6 Hz, d1 + d2), 52.06 (d, ${}^{3}J_{CP}$ = 7.3 Hz, d1 or d2), 52.09 (d, ${}^{3}J_{CP}$ = 7.3 Hz, d1 or d2), 52.8 (d, ${}^{2}J_{CP}$ = 7.6 Hz, d1 or (d) (2), 52.87 (d, ${}^{2}J_{CP} = 7.6$ Hz, d1 or d2), 52.90 (d, ${}^{2}J_{CP} = 6.9$ Hz, d1 or d2), 53.05 (d, ${}^{2}J_{CP} = 6.9$ Hz, d1 or d2), 53.05 (d, ${}^{2}J_{CP} = 7.1$ Hz, d1 or d2), 53.26 (dd, ${}^{1}J_{CP} = 156.7$ Hz, ${}^{5}J_{CP} = 3.5$ Hz, d1 or d2), 53.34 (dd, ${}^{1}J_{CP} = 156.7$ Hz, ${}^{5}J_{CP} = 3.4$ Hz, d1 or d2), 127.1 (2 × CH_{ar}, d1 + d2), 128.3 (4 × CH_{ar}, d1 + d2), 128.4 (4 × CH_{ar}) d1 + d2), 128.8 (dd, ${}^{3}J_{CP} = 12.4 \text{ Hz}$, ${}^{3}J_{CP} = 12.4 \text{ Hz}$, d1 + d2), 129.6 (d, ${}^{2}J_{\rm CP}$ = 5.0 Hz, d1 or d2), 129.7 (d, ${}^{2}J_{\rm CP}$ = 4.9 Hz, d1 or d2), 139.7 (2 × $C_{q,ar'}$ d1 + d2). ³¹P NMR (162 MHz, CDCl₃) δ 29.30, 29.33, 32.59 $(2 \times s)$. IR (ATR, cm⁻¹) ν_{max} : 1016, 1223, 1454, 3428. MS (ESI, pos): m/z (%) 296.2/297.2 (M – [P(O)(OMe)₂]⁻, 100/18), 406.3/407.3 $(M + H^{+}, 20/10)$. HRMS: m/z calcd for $C_{17}H_{29}NO_6P_2 + H^{+} 406.1543$, found 406.1556.

A 250 mg (1.82 mmol) amount of **3b2** was converted into **5b2** and **6b2** using 2 equiv of DMPTMS and 0.5 equiv of H_2SO_4 . After workup, 323 mg of crude product was obtained as diastereomers (0.90 mmol, 50% yield, yellow oil, ratio 5/6 = 7/3). The 1,6–1,2-adducts and 1,4–1,2-adducts were separated using preparative HPLC (reversed-phase C18 column, water/acetonitrile eluent). Three fractions were isolated for characterization.

Tetramethyl (1-(Propylamino)hex-4-ene-1,3-diyl)(E)-bis(phosphonate) **5b2** (Diastereomer 1, 4/1 E/Z Mixture, Spectral Data of the Major Isomer). ¹H NMR (400 MHz, CDCl₃) δ 0.90 (3H, t, *J* = 7.2 Hz), 1.44 (2H, sext, *J* = 7.2 Hz), 1.65 (1H, br s), 1.73 (3H, dd, *J* = 6.5 Hz, ⁵*J*_{HP} = 5.2 Hz), 1.69–1.87 (1H, m), 2.14–2.26 (1H, m), 2.63 (2H, t, *J* = 7.2 Hz), 2.92–3.04 (2H, m), 3.74 (3H, d, ³*J*_{HP} = 10.6 Hz), 3.74 (3H, d, ³*J*_{HP} = 10.6 Hz), 3.77 (3H, d, ³*J*_{HP} = 10.7 Hz), 3.80 (3H, d, ³*J*_{HP} = 10.4 Hz), 5.30–5.39 (1H, m), 5.64–5.74 (1H, m). ¹³C NMR (100 MHz, CDCl₃) δ 11.7, 18.2 (d, ⁴*J*_{CP} = 2.2 Hz), 23.4, 29.7 (dd, ²*J*_{CP} = 3.8 Hz), ²*J*_{CP} = 3.8 Hz), 37.9 (dd, ¹*J*_{CP} = 138.7 Hz, ³*J*_{CP} = 6.6 Hz), 49.8 (d, ³*J*_{CP} = 7.5 Hz), 52.5 (dd, ¹*J*_{CP} = 150.7 Hz, ³*J*_{CP} = 12.7 Hz), 52.6 (d, ²*J*_{CP} = 7.4 Hz), 53.2 (d, ²*J*_{CP} = 7.3 Hz), 125.0 (d, ²*J*_{CP} = 9.9 Hz), 130.9 (d, ²*J*_{CP} = 13.8 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 30.27, 31.55. IR (ATR, cm⁻¹) ν_{max} : 1022, 1211, 1649, 3429. MS (ESI, pos): *m/z* (%) 248.2/249.2 (M - [P(O)(OMe)₂]⁻, 100/15), 358.2/359.2 (M + H⁺, 25/5). HRMS: *m/z* calcd for C₁₃H₂₉NO₆P₂ + H⁺ 358.1543, found 358.1534.

Tetramethyl (1-(Propylamino)hex-4-ene-1,3-diyl)(E)-bis-(phosphonate)**5b2** (Diastereomer 2, E). ¹H NMR (400 MHz, CDCl₃) δ 0.91 (3H, t, *J* = 7.4 Hz), 1.36–1.48 (2H, m), 1.73 (3H, ddd, *J* = 6.7 Hz, ⁵J_{HP} = 5.1 Hz, *J* = 1.6 Hz), 1.78–1.93 (3H, m), 2.47 (1H, dtd, *J* = 11.2 Hz, *J* = 6.9 Hz, ⁴J_{HP} = 1.5 Hz), 2.80–2.88 (2H, m), 3.03–3.15 (1H, m), 3.74 (6H, d, ³J_{HP} = 10.6 Hz), 3.77 (6H, d, ³J_{HP} = 10.6 Hz), 5.21–5.30 (1H, m), 5.61–5.71 (1H, m). ¹³C NMR (100 MHz, CDCl₃) δ 11.7, 18.2 (d, ⁴J_{CP} = 2.3 Hz), 23.8, 29.2 (dd, ²J_{CP} = 7.9 Hz, ²J_{CP} = 2.3 Hz), 37.1 (dd, ¹J_{CP} = 140.9 Hz, ³J_{CP} = 14.1 Hz), 50.0, 51.4 (dd, ¹J_{CP} = 142.8 Hz, ³J_{CP} = 6.9 Hz), 53.1 (d, ²J_{CP} = 6.9 Hz), 131.9 (d, ³J_{CP} = 14.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 31.37 (d, ⁴*J*_{PP} = 10.2 Hz), 32.62 (d, ⁴*J*_{PP} = 10.2 Hz).). IR (ATR, cm⁻¹) ν_{max} : 1022, 1211, 1454, 2957. MS (ESI, pos): *m/z* (%) 248.2/249.2 (M - [P(O)(OMe)₂]⁻, 100/10), 358.2 (M + H⁺, 20). HRMS: *m/z* calcd for C₁₃H₂₉NO₆P₂ + H⁺ 358.1543, found 358.1544.

Tetramethyl (1-(Propylamino)hex-3-ene-1,5-diyl)(E)-bis(phosphonate) 6b2 (2 Diastereomers [d1 and d2], 1/1 Mixture). ¹H NMR (400 MHz, CDCl₃) δ 0.91 (6H, t, d1 + d2), 1.30 (6H, dd, ${}^{3}J_{\rm HP}$ = 18.5 Hz, J = 7.2 Hz, d1 + d2), 1.46 (4H, sext, J = 7.3 Hz, d1 + d2), 2.30-2.42 (2H, m, d1 + d2), 2.51-2.60 (2H, m, d1 + d2), 2.62-2.76 (6H, m, d1 + d2), 2.91 (1H, ddd, ² J_{HP} = 12.7 Hz, J = 8.1 Hz, J = 4.6 Hz, d1), 2.92 $(1H, ddd, {}^{2}J_{HP} = 12.7 Hz, J = 8.1 Hz, J = 4.6 Hz, d2), 3.75 (12H, d, {}^{3}J_{HP} =$ 10.6 Hz, d1 + d2), 3.78 (6H, d, ${}^{3}J_{HP}$ = 10.6 Hz, d1 + d2), 3.80 (6H, d, ${}^{3}J_{\text{HP}}$ = 10.6 Hz, d1 + d2), 5.54–5.69 (4H, m, 4 × d1 + d2). 13 C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 11.7 (d1 + d2), 13.86 (d, {}^2J_{CP} = 6.0 \text{ Hz}, d1 \text{ or } d2),$ 13.94 (d, ${}^{2}J_{CP}$ = 6.0 Hz, d1 or d2), 23.3 (d1 + d2), 32.9 (d1 + d2), 35.04 $(d, {}^{1}J_{CP} = 139.5 \text{ Hz}, d1 \text{ or } d2), 35.05 (d, {}^{1}J_{CP} = 139.5 \text{ Hz}, d1 \text{ or } d2), 50.5$ $(d, {}^{3}J_{CP} = 7.8 \text{ Hz}, d1 + d2), 52.75 (d, {}^{2}J_{CP} = 7.3 \text{ Hz}, d1 \text{ or } d2), 52.78 (d, d1)$ ${}^{2}J_{CP}$ = 7.0 Hz, d1 or d2), 52.9 (d, ${}^{2}J_{CP}$ = 7.2 Hz, d1 or d2), 53.1 (d, ${}^{2}J_{CP}$ = 7.2 Hz, d1 or d2), 54.73 (d, ${}^{1}J_{CP} = 157.4$ Hz, d1 or d2), 54.76 (d, ${}^{1}J_{CP} = 157.4$ Hz, d1 or d2), 54.76 (d, ${}^{1}J_{CP} = 157.4$ Hz, d1 or d2), 128.9 (dd, ${}^{3}J_{CP} = 12.3$ Hz, ${}^{3}J_{CP} = 12.3$ Hz, d1 + d2), 129.6 (d, ${}^{2}J_{CP} = 9.6$ Hz, d1 + d2). ${}^{31}P$ NMR (162 MHz, CDCl₃) δ 29.38, 29.41, 32.60 (2 × s). IR (ATR, cm⁻¹) ν_{max} : 1022, 1229, 1454, 2957. MS (ESI, pos): m/z (%) 248.2/249.2 (M - [P(O)(OMe)_2]⁻, 100/15), 358.2 (M + H⁺, 15). HRMS: m/z calcd for $C_{13}H_{29}NO_6P_2$ + H⁺ 358.1543, found 358.1539.

A 272 mg (1.98 mmol) amount of **3b3** was converted into **5b3** and **6b3** using 2 equiv of DMPTMS and 0.5 equiv of H_2SO_4 . After workup, 304 mg of crude product was obtained as diastereomers (0.85 mmol, 43% yield, yellow oil, ratio **5/6** = 6/4). The 1,6–1,2-adducts and 1,4–1,2-adducts were separated using preparative HPLC (reversed-phase C18 column, water/acetonitrile eluent). Three fractions were isolated for characterization.

Tetramethyl (1-(lsopropylamino)hex-4-ene-1,3-diyl)(E)-bis(phosphonate) **5b3** (1 Diastereomer, 4/1 E/Z Mixture, Spectral Data of the Major Isomer). ¹H NMR (400 MHz, CDCl₃) δ 0.99 (3H, d, J = 6.2 Hz), 1.02 (3H, d, J = 6.2 Hz), 1.63–1.77 (1H, m), 1.74 (3H, ddd, J = 6.7 Hz, ⁵J_{HP} = 5.0 Hz, J = 1.5 Hz), 2.13–2.26 (1H, m), 2.93–3.10 (3H, m), 3.74 (6H, d, ³J_{HP} = 10.7 Hz), 3.77 (3H, d, ³J_{HP} = 11.0 Hz), 3.81 (3H, d, ³J_{HP} = 10.3 Hz), 5.30–5.38 (1H, m), 5.66–5.74 (1H, m). ¹³C NMR (100 MHz, CDCl₃) δ 18.1 (d, ⁴J_{CP} = 2.5 Hz), 22.7, 23.2, 30.2 (dd, ²J_{CP} = 4.0 Hz, ²J_{CP} = 4.0 Hz), 37.8 (dd, ¹J_{CP} = 138.8 Hz, ³J_{CP} = 5.0 Hz), 46.3 (d, ³J_{CP} = 9.6 Hz), 49.4 (dd, ¹J_{CP} = 153.5 Hz, ³J_{CP} = 14.1 Hz), 52.64 (d, ²J_{CP} = 7.2 Hz), 52.66 (d, ²J_{CP} = 7.2 Hz), 53.2 (d, ²J_{CP} = 13.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 30.34, 31.54. IR (ATR, cm⁻¹) ν_{max} : 1024, 1206, 1451, 2956. MS (ESI, pos): m/z (%) 248.2/249.2 (M – [P(O)(OMe)₂]⁻, 100/10), 358.1/359.1 (M + H⁺, 30/5). HRMS: m/z calcd for C₁₃H₂₉NO₆P₂ + H⁺ 358.1543, found 358.1538.

Tetramethyl (1-(Isopropylamino)hex-4-ene-1,3-diyl)(E)-bis(phosphonate) **5b3** (1 Diastereomer, 9/1 E/Z Mixture, Spectral Data of the Major Isomer). ¹H NMR (400 MHz, CDCI₃) δ 0.91 (3H, d, J = 6.0 Hz), 1.02 (3H, d, J = 6.2 Hz), 1.73 (ddd, J = 7.1 Hz, ⁵ $J_{\rm HP} = 5.0$ Hz, J = 1.6 Hz), 1.73–1.82 (1H, m), 1.89–1.99 (1H, m), 2.91 (1H, ddd, ² $J_{\rm HP} = 11.5$ Hz, J = 11.5 Hz, J = 2.6 Hz), 3.09–3.17 (2H, m), 3.73 (3H, d, ³ $J_{\rm HP} = 10.6$ Hz), 3.74 (3H, d, ³ $J_{\rm HP} = 10.5$ Hz), 3.76 (3H, d, ³ $J_{\rm HP} = 10.6$ Hz), 3.77 (3H, d, ³ $J_{\rm HP} = 10.4$ Hz), 5.20–5.29 (1H, m), 5.63–5.73 (1H, m). ¹³C NMR (100 MHz, CDCI₃) δ 18.2 (d, ⁴ $J_{\rm CP} = 2.6$ Hz), 22.3, 24.1, 29.9 (dd, ² $J_{\rm CP} = 7.6$ Hz, ² $J_{\rm CP} = 2.4$ Hz), 36.9 (dd, ¹ $J_{\rm CP} = 140.2$ Hz, ³ $J_{\rm CP} = 13.8$ Hz), 46.5, 48.6 (dd, ¹ $J_{\rm CP} = 142.9$ Hz, ³ $J_{\rm CP} = 16.1$ Hz), 52.6 (d, ² $J_{\rm CP} = 7.4$ Hz), 52.67 (d, ² $J_{\rm CP} = 7.1$ Hz), 52.69 (d, ² $J_{\rm CP} = 7.9$ Hz), 53.1 (d, ² $J_{\rm CP} = 6.8$ Hz), 124.4 (d, ² $J_{\rm CP} = 10.2$ Hz), 131.9 (d, ² $J_{\rm CP} = 13.6$ Hz). ³¹P NMR (162 MHz, CDCI₃) δ 31.38 (d, ⁴ $J_{\rm PP} = 11.6$ Hz), 32.48 (d, ⁴ $J_{\rm PP} = 9.8$ Hz). IR (ATR, cm⁻¹) $\nu_{\rm max}$: 1024, 1205, 1450, 2957. MS (ESI, pos): m/z (%) 248.2/249.2 (M – [P(O)(OMe)₂]⁻, 100/15), 358.1 (M + H⁺, 20). HRMS: m/z calcd for C₁₃H₂₉NO₆P₂ + H⁺ 358.1543, found 358.1541.

Tetramethyl (1-(Isopropylamino)hex-3-ene-1,5-diyl)(E)-bis(phosphonate) **6b3** (2 Diastereomers [d1 and d2], 1/1 Mixture). ¹H NMR (400 MHz, CDCl₃) δ 1.02 (12H, d, *J* = 6.2 Hz, d1 + d2), 1.30 (6H, dd, ³*J*_{HP} = 18.4 Hz, *J* = 7.2 Hz, d1 + d2), 2.28–2.39 (2H, m, d1 + d2), 2.50–2.61 (2H, m, d1 + d2), 2.70 (2H, dqd, ²*J*_{HP} = 22.2 Hz, *J* = 7.2 Hz,

J = 7.2 Hz, d1 + d2), 2.94–3.06 (4H, m d1 + d2), 3.75 (12H, d, ${}^{3}J_{HP} =$ 10.6 Hz, d1 + d2), 3.78 (6H, d, ${}^{3}J_{HP}$ = 10.6 Hz, d1 + d2), 3.81 (6H, d, ${}^{3}J_{\text{HP}} = 10.6 \text{ Hz}, \text{ d1 + d2}), 5.51-5.71 (4H, m, \text{ d1 + d2}).$ ${}^{13}\text{C} \text{ NMR}$ (100 MHz, CDCl₃) δ 13.87 (d, ²J_{CP} = 6.8 Hz, d1 or d2), 13.93 (d, ²J_{CP} = 6.8 Hz, d1 or d2), 22.86 (d1 or d2), 22.88 (d1 or d2), 33.37 (d, ²J_{CP} = 1.9 Hz, d1 + d2), 35.0 (d, ${}^{1}J_{CP}$ = 139.8 Hz, d1 or d2), 35.1 (d, ${}^{1}J_{CP}$ = 139.5 Hz, d1 or d2), 46.77 (d, ${}^{3}J_{CP}$ = 9.1 Hz, d1 or d2), 46.83 (d, ${}^{3}J_{CP}$ = 9.4 Hz, d1 or d2), 51.81 (dd, ${}^{1}J_{CP}$ = 159.2 Hz, ${}^{5}J_{CP}$ = 3.2 Hz, d1 or d2), 51.84 (dd, ${}^{1}J_{CP} = 159.3 \text{ Hz}, {}^{5}J_{CP} = 3.1 \text{ Hz}, d1 \text{ or } d2), 52.76 \text{ (d, } {}^{2}J_{CP} = 7.4 \text{ Hz}, d1 \text{ or }$ d2), 52.78 (d, ${}^{2}J_{CP}$ = 7.0 Hz, d1 or d2), 52.81 (d, ${}^{2}J_{CP}$ = 7.3 Hz, d1 or d2), 52.85 (d, ${}^{2}J_{CP}$ = 7.3 Hz, d1 or d2), 52.94 (d, ${}^{2}J_{CP}$ = 7.3 Hz, d1 or d2), 53.5 $(d_{1}^{2}J_{CP} = 7.3 \text{ Hz}, d1 \text{ or } d2), 128.91 (dd_{1}^{3}J_{CP} = 14.0 \text{ Hz}, {}^{3}J_{CP} = 10.3 \text{ Hz},$ d1 or d2), 128.95 (dd, ${}^{3}J_{CP}$ = 14.0 Hz, ${}^{3}J_{CP}$ = 10.3 Hz, d1 or d2), 129.65 $(d, {}^{2}J_{CP} = 9.5 \text{ Hz}, d1 \text{ or } d2), 129.72 (d, {}^{2}J_{CP} = 9.4 \text{ Hz}, d1 \text{ or } d2). {}^{31}\text{P} \text{ NMR}$ (162 MHz, CDCl₃) δ 29.33, 29.37, 32.59, 32.66. IR (ATR, cm⁻¹) ν_{max} : 1024, 1205, 1450, 2957. MS (ESI, pos): m/z (%) 248.2/249.2 (M - $[P(O)(OMe)_2]^-$, 100/12), 358.1 (M + H⁺, 10). HRMS: *m*/*z* calcd for $C_{13}H_{29}NO_6P_2 + H^+$ 358.1543, found 358.1537.

A 240 mg (1.59 mmol) amount of **3b4** was converted into **5b4** and **6b4** using 2 equiv of DMPTMS and 0.5 equiv of H_2SO_4 . After workup, 357 mg of crude product was obtained as diastereomers (0.96 mmol, 60% yield, yellow oil, ratio **5**/**6** = 6/4). The 1,6–1,2-adducts were separated using preparative HPLC (reversed-phase C18 column, water/ acetonitrile eluent). Two fractions were isolated for characterization.

Tetramethyl (1-(tert-Butylamino)hex-3-ene-1,5-diyl)(E)-bis(phosphonate) **6b4** (1 Diastereomer, E, 90% Pure). ¹H NMR (400 MHz, CDCl₃) δ 1.08 (9H, s), 1.31 (3H, dd, ³J_{HP} = 18.5 Hz, J = 7.2 Hz), 2.40–2.53 (2H, m), 2.72 (1H, dqd, ²J_{HP} = 22.5 Hz, J = 7.3 Hz, J = 7.2 Hz), 3.11 (1H, ddd, ²J_{HP} = 18.3 Hz, J = 5.5 Hz), 3.75 (9H, d, ³J_{HP} = 10.6 Hz), 3.83 (3H, d, ³J_{HP} = 10.2 Hz), 5.52–5.59 (1H, m), 5.69–5.78 (1H, m). ¹³C NMR (100 MHz, CDCl₃) δ 13.9 (d, ²J_{CP} = 5.9 Hz), 29.9, 35.0 (d, ¹J_{CP} = 139.7 Hz), 36.1 (dd, ²J_{CP} = 4.3 Hz, J = 2.1 Hz), 49.1 (dd, ¹J_{CP} = 167.3 Hz, ⁵J_{CP} = 3.6 Hz), 51.6 (d, ³J_{CP} = 7.0 Hz), 54.2 (d, ²J_{CP} = 7.4 Hz), 128.8 (dd, ³J_{CP} = 13.7 Hz, ³J_{CP} = 5.6 Hz), 130.1 (d, ²J_{CP} = 9.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 29.15, 32.66. IR (ATR, cm⁻¹) ν_{max} : 1018, 1221, 1452, 2957. MS (ESI, pos): *m*/*z* (%) 262.3/263.3 (M – [P(O)(OMe)₂]⁻, 100/15), 372.3 (M + H⁺, 10). HRMS: *m*/*z* calcd for C₁₄H₃₁NO₆P₂ + H⁺ 372.1699, found 372.1693.

Tetramethyl (1-(tert-Butylamino)hex-3-ene-1,5-diyl)(E)-bis-(phosphonate) **6b4** (1 Diastereomer, E, 75% Pure). ¹H NMR (400 MHz, CDCl₃) δ 1.09 (9H, s), 1.30 (3H, dd, ³J_{HP} = 18.5 Hz, J = 7.2 Hz), 2.39–2.53 (2H, m), 2.72 (1H, dqd, ²J_{HP} = 22.1 Hz, J = 7.4 Hz, J = 7.4 Hz), 3.12 (1H, ddd, ²J_{HP} = 18.4 Hz, J = 5.4 Hz, J = 5.4 Hz), 3.74 (3H, d, ³J_{HP} = 10.4 Hz), 3.75 (3H, d, ³J_{HP} = 10.6 Hz), 3.76 (3H, d, ³J_{HP} = 10.6 Hz), 3.82 (3H, d, ³J_{HP} = 10.2 Hz), 5.47–5.54 (1H, m), 5.69– 5.78 (1H, m). ¹³C NMR (100 MHz, CDCl₃) δ 13.9 (d, ²J_{CP} = 5.9 Hz), 29.9, 35.1 (d, ¹J_{CP} = 139.2 Hz), 35.9 (dd, ²J_{CP} = 4.3 Hz, J = 2.1 Hz), 49.1 (dd, ¹J_{CP} = 167.8 Hz, ⁵J_{CP} = 3.6 Hz), 51.6 (d, ³J_{CP} = 7.1 Hz), 52.5 (d, ²J_{CP} = 7.6 Hz), 52.8 (d, ²J_{CP} = 6.9 Hz), 52.8 (d, ²J_{CP} = 7.1 Hz), 54.2 (d, ²J_{CP} = 7.4 Hz), 129.0 (dd, ³J_{CP} = 13.9 Hz, ³J_{CP} = 5.8 Hz), 130.2 (d, ²J_{CP} = 9.7 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 29.16, 32.83. IR (ATR, cm⁻¹) ν_{max} : 1018, 1222, 2957, 3431. MS (ESI, pos): *m*/z (%) 262.3/263.3 (M - [P(O)(OMe)₂]⁻, 100/15), 372.3 (M + H⁺, 15). HRMS: *m*/z calcd for C₁₄H₃₁NO₆P₂ + H⁺ 372.1699, found 372.1694.

A 150 mg (0.46 mmol) amount of 3c was converted into 5c using 2 equiv of DMPTMS and 0.5 equiv of H_2SO_4 at reflux temperature. After workup 169 mg of crude product was obtained as 4 chromatographically unseparable diastereomers in a 3/3/1/1 ratio (0.39 mmol, 84% yield, yellow oil).

Tetramethyl (1-((1R,5S)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-2yl)-3-(isopropylamino)propane-1,3-diyl)bis(phosphonate) **5c**. ¹H NMR (400 MHz, CDCl₃) δ 0.75–0.79 (3H, m), 0.81–0.85 (2H, m), 0.86–0.93 (4H, m), 0.95–1.10 (2H, m), 1.15–1.17 (3H, m), 1.51–1.64 (1H, m), 1.88–2.06 (1H, m), 2.10–2.22 (3H, m), 2.27–2.36 (1H, m), 2.66–2.79 (1H, m), 2.86–3.10 (2H, m), 3.55–3.71 (13H, m), 5.32– 5.41 (1H, m). ³¹P NMR (162 MHz, CDCl₃) δ 31.74 (d, ⁴J_{PP} = 11.8 Hz), 31.49 (d, ⁴J_{PP} = 11.8 Hz), 31.16, 31.00 (d, ⁴J_{PP} = 13.8 Hz), 30.92 (d, ⁴J_{PP} = 13.8 Hz), 30.66, 30.23, 30.05. IR (ATR, cm⁻¹) ν_{max} : 1026, 1242,

1458, 2951. MS (ESI, pos): m/z (%) 328.3/329.3 (M – [P(O)-(OMe)₂]⁻, 40/8) 438.3/439.3 (M + H⁺, 100/25). HRMS: m/z calcd for C₁₉H₃₇NO₆P₂ + H⁺ 438.2169, found 438.2180.

Synthesis of α -Aminophosphonates 7. In a flame-dried roundbottom flask equipped with a magnetic stirring bar $\alpha, \beta, \gamma, \delta$ -diunsaturated imines 3 were dissolved in dry dichloromethane under a N2 atmosphere. Next, an appropriate amount of DMPTMS was added using a syringe. H₂SO₄ was then added via a syringe in a dropwise fashion, after which the reaction mixture started to boil. The reaction progress was monitored using HPLC-MS, and after complete consumption of the starting material, the reaction mixture was poured into 10 mL of a 2 M HCl solution. Diethyl ether was added, and the mixture was extracted thrice using diethyl ether. The resulting aqueous layer was then rendered alkaline to a pH of 14 using a 2 M NaOH solution. Next, the alkaline aqueous phase was extracted thrice using ethyl acetate $(3 \times 10 \text{ mL})$. The combined ethyl acetate fractions were dried over MgSO4, filtered, and concentrated in vacuo, yielding the crude desired α -aminophosphonates. If necessary, they were purified using column chromatography (hexanes/EtOAc).

A 150 mg (0.61 mmol) amount of (1E,2E,4E)-N-benzyl-5-phenylpenta-2,4-dien-1-imine 3a1 was converted into dimethyl ((2E,4E)-1-(benzylamino)-5-phenylpenta-2,4-dien-1-yl)phosphonate 7a1 using 1 equiv of DMPTMS and 0.5 equiv of H₂SO₄. After workup, 180 mg was obtained (0.50 mmol, 82% yield, yellow oil). ¹H NMR (400 MHz, $CDCl_3$ δ 1.95 (1H, br s), 3.66 (1H, dd, ²J_{HP} = 19.9 Hz, J = 8.5 Hz), 3.73 $(1H, d, J = 13.4 \text{ Hz}), 3.79 (3H, d, {}^{3}J_{\text{HP}} = 10.5 \text{ Hz}), 3.82 (3H, d, {}^{3}J_{\text{HP}} =$ 10.5 Hz), 3.96 (1H, d, J = 13.4 Hz), 5.77 (1H, ddd, J = 15.2 Hz, J = 8.5 Hz, ${}^{3}J_{\text{HP}}$ = 6.4 H), 6.47 (1H, ddd, J = 15.2 Hz, J = 10.6 Hz, ${}^{4}J_{\text{HP}}$ = 4.6 Hz), 6.60 (1H, dd, J = 15.7 Hz, J = 1.8 Hz), 6.85 (1H, dd, J = 15.7 Hz, J = 10.6 Hz), 7.23–7.43 (10H, m). ¹³C NMR (100 MHz, CDCl₃) δ 50.9 (d, ${}^{3}J_{CP} = 16.3 \text{ Hz}$), 53.1 (d, ${}^{2}J_{CP} = 6.8 \text{ Hz}$), 53.3 (d, ${}^{2}J_{CP} = 7.1 \text{ Hz}$), 56.8 (d, ${}^{1}J_{CP}$ = 156.3 Hz), 126.1 (2 × CH_{ar}), 126.8, 127.3 (d, ${}^{2}J_{CP}$ = 7.7 Hz), 127.4, 127.5 (d, ${}^{4}J_{CP}$ = 5.2 Hz), 127.9 (2 × CH_{ar}), 128.1 (2 × CH_{ar}), 128.3 (2 × CH_{ar}), 132.9 (d, ${}^{5}J_{CP}$ = 4.2 Hz), 134.7 (d, ${}^{3}J_{CP}$ = 14.0 Hz), 136.6 (d, ${}^{6}J_{CP}$ = 1.5 Hz), 138.9. ${}^{31}P$ NMR (162 MHz, CDCl₃) δ 25.91. IR (ATR, cm⁻¹) ν_{max} : 1025, 1241, 1450, 2952. MS (ESI, pos): m/z (%) 358.2/359.2 (M + H⁺, 100/22). HRMS: m/z calcd for C₂₀H₂₄NO₃P + H⁺ 358.1567, found 358.1560.

A 100 mg (0.50 mmol) amount of (1E,2E,4E)-N-propyl-5-phenylpenta-2,4-dien-1-imine 3a2 was converted into dimethyl ((2E,4E)-5phenyl-1-(propylamino)penta-2,4-dien-1-yl)phosphonate 7a2 using 5 equiv of DMPTMS and 2 equiv of H₂SO₄. After workup, 129 mg was obtained (0.42 mmol, 83% yield, yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 0.92 (3H, t, J = 7.4 Hz), 1.44–1.55 (2H, m), 2.51 (1H, dt, J = 11.3 Hz, J = 7.0 Hz), 2.69 (1H, dt, J = 11.3 Hz, J = 7.4 Hz), 3.63 (1H, dd, ${}^{2}J_{\rm HP}$ = 19.6 Hz, J = 8.6 Hz), 3.79 (3H, d, ${}^{3}J_{\rm HP}$ = 7.8 Hz), 3.82 (3H, d, ${}^{3}J_{\rm HP}$ = 7.8 Hz), 5.72 (1H, ddd, J = 15.2 Hz, J = 8.6 Hz, ${}^{3}J_{\rm HP}$ = 6.4 Hz), 6.45 (1H, ddd, J = 15.2 Hz, J = 10.6 Hz, ${}^{4}J_{HP} = 4.6$ Hz), 6.57 (1H, dd, J = 15.7 Hz, J = 1.9 Hz), 6.81 (1H, dd, J = 15.7 Hz, J = 10.6 Hz), 7.23 (1H, dd, J = 7.3 Hz, J = 7.3 Hz), 7.32 (2H, dd, J = 7.3 Hz, J = 7.3 Hz), 7.40 (2H, d, J = 7.3 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 11.6, 23.0, 50.0 (d, ${}^{3}J_{CP} = 15.5 \text{ Hz}$), 53.3 (d, ${}^{2}J_{CP} = 7.2 \text{ Hz}$), 53.5 (d, ${}^{2}J_{CP} = 7.2 \text{ Hz}$), 58.6 (d, ${}^{1}J_{CP} = 155.6 \text{ Hz}$, 126.4 (2 × CH_{ar}), 127.7, 127.8 (d, ${}^{4}J_{CP} = 4.3 \text{ Hz}$), 128.3 (d, ${}^{2}J_{CP}$ = 7.9 Hz), 128.6 (2 × CH_{ar}), 133.0 (d, ${}^{5}J_{CP}$ = 4.3 Hz), 134.4 (d, ${}^{3}J_{CP}$ = 14.0 Hz), 136.9 (d, ${}^{6}J_{CP}$ = 1.9 Hz). ${}^{31}P$ NMR (162 MHz, CDCl₃) δ 26.00. IR (ATR, cm⁻¹) ν_{max} : 1025, 1242, 1448, 2955. MS (ESI, pos): m/z (%) 200.1/201.0 (M – [P(O)(OMe)₂]⁻, 100/15), 310.0/311.0 $(M + H^+, 25/5)$. HRMS: m/z calcd for $C_{16}H_{24}NO_3P + H^+$ 310.1567, found 310.1562.

A 105 mg (0.53 mmol) amount of (1*E*,2*E*,4*E*)-*N*-isopropyl-5-phenylpenta-2,4-dien-1-imine **3a3** was converted into dimethyl ((2*E*,4*E*)-1-(isopropylamino)-5-phenylpenta-2,4-dien-1-yl)phosphonate **7a3** using 5 equiv of DMPTMS and 2 equiv of H₂SO₄. After workup, 159 mg was obtained (0.51 mmol, 97% yield, yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 1.01 (3H, d, *J* = 6.2 Hz), 1.09 (3H, d, *J* = 6.2 Hz), 2.92 (1H, sept, *J* = 6.2 Hz), 3.74 (1H, d, ²*J*_{HP} = 21.6 Hz, *J* = 8.5 Hz), 3.79 (3H, d, ³*J*_{HP} = 10.5 Hz), 3.83 (3H, d, ³*J*_{HP} = 10.4 Hz), 5.71 (1H, ddd, *J* = 15.2 Hz, *J* = 8.5 Hz, ³*J*_{HP} = 6.3 Hz), 6.43 (1H, ddd, *J* = 15.2 Hz, *J* = 10.5 Hz, ⁴*J*_{HP} = 4.6 Hz), 6.56 (1H, dd, *J* = 15.7 Hz, *J* = 2.1 Hz), 6.80 (1H, dd, 15.7 Hz, $\begin{array}{l} J=10.5~{\rm Hz}), 7.21-7.40~({\rm SH, m}).\ ^{13}{\rm C}~{\rm NMR}~(100~{\rm MHz},~{\rm CDCl}_3)~\delta~21.5,\\ 23.8, 46.0~({\rm d},\ ^3J_{\rm CP}=15.4~{\rm Hz}),~53.3~({\rm d},\ ^2J_{\rm CP}=7.1~{\rm Hz}),~53.80~({\rm d},\ ^2J_{\rm CP}=7.2~{\rm Hz}),~55.9~({\rm d},\ ^1J_{\rm CP}=157.2~{\rm Hz}),~126.4~(2~{\rm \times}~{\rm CH}_{\rm ar}),~127.7,~127.8~({\rm d},\ ^4J_{\rm CP}=4.3~{\rm Hz}),~128.58~(2~{\rm \times}~{\rm CH}_{\rm ar}),~128.61~({\rm d},\ ^2J_{\rm CP}=5.0~{\rm Hz}),~133.0~({\rm d},\ ^5J_{\rm CP}=4.3~{\rm Hz}),~134.2~({\rm d},\ ^3J_{\rm CP}=14.2~{\rm Hz}),~136.9~({\rm d},\ ^6J_{\rm CP}=1.5~{\rm Hz}).\ ^{31}{\rm P}\\ {\rm NMR}~(162~{\rm MHz},~{\rm CDCl}_3)~\delta~26.27.~{\rm IR}~({\rm ATR},~{\rm cm}^{-1})~\nu_{\rm max}:~1024,~1244,\\ 1448,~2956.~{\rm MS}~({\rm ESI},~{\rm pos}):~m/z~(\%)~200.0/201.0~({\rm M}~{\rm -}~[{\rm P}({\rm O})-({\rm OMe})_2]^-,~100,~15)~310.0~({\rm M}~{\rm +}~{\rm H}^+,~8).~{\rm HRMS}:~m/z~{\rm calcd}~{\rm for}\\ {\rm C}_{16}{\rm H}_{24}{\rm NO}_3{\rm P}~{\rm +}~{\rm H}^+~310.1567,~{\rm found}~310.1561.\\ \end{array}$

A 102 mg (0.48 mmol) amount of (1E,2E,4E)-N-tert-butyl-5phenylpenta-2,4-dien-1-imine 3a4 was converted into dimethyl ((2E,4E)-1-(*tert*-butylamino)-5-phenylpenta-2,4-dien-1-yl)phosphonate 7a4 using 5 equiv of DMPTMS and 2 equiv of H₂SO₄. After workup, 133 mg was obtained (0.41 mmol, 86% yield, yellow oil). ¹H NMR (400 MHz, CDCl₃) δ 1.11 (9H, s), 3.76 (3H, d, ${}^{3}J_{HP} = 10.4$ Hz), 3.80 (1H, dd, ${}^{2}J_{HP} = 24.8$ Hz, J = 8.4 Hz), 3.84 (3H, d, ${}^{3}J_{HP} = 10.3$ Hz), 5.81 (1H, ddd, J = 15.1 Hz, J = 7.5 Hz, ${}^{3}J_{HP} = 7.5$ Hz), 6.44 (1H, ddd, J =15.3 Hz, J = 10.5 Hz, ${}^{4}J_{HP} = 5.0$ Hz), 6.54 (1H, dd, J = 15.6 Hz, J =2.5 Hz), 6.79 (1H, dd, J = 15.6 Hz, J = 10.5 Hz), 7.22 (1H, dd, J = 7.3 Hz, J = 7.3 Hz), 7.31 (2H, dd, J = 7.3 Hz, J = 7.3 Hz), 7.39 (2H, d, J = 7.3 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 29.9, 52.1 (d, ${}^{3}J_{CP}$ = 14.5 Hz), 53.2 (d, ${}^{2}J_{CP}$ = 7.4 Hz), 53.5 (d, ${}^{1}J_{CP}$ = 158.5), 54.4 (d, ${}^{2}J_{CP}$ = 7.3 Hz), 126.3 (2 × CH_a), 127.6, 128.1 (d, ${}^{4}J_{CP}$ = 5.0 Hz), 128.6 (2 × CH_a), 131.9 (d, ${}^{2}J_{CP}$ = 6.2 Hz), 132.6 (d, ${}^{5}J_{CP} = 4.9 \text{ Hz}$), 132.7 (d, ${}^{3}J_{CP} = 13.7 \text{ Hz}$), 137.0 (d, ${}^{6}J_{CP} = 2.1 \text{ Hz}$). ³¹P NMR (162 MHz, CDCl₃) δ 26.24. IR (ATR, cm⁻¹) ν_{max} : 1022, 1053, 1240, 1447, 2953. MS (ESI, pos): m/z (%) 214.1/215.1 (M - $[P(O)(OMe)_2]^-$, 100/18) 324.0/325.0 (M + H⁺, 35/5). HRMS: m/zcalcd for C₁₇H₂₆NO₃P + H⁺ 324.1723, found 324.1725.

A 175 mg (0.94 mmol) amount of **3b1** was converted into dimethyl ((2E,4E)-1-(benzylamino)hexa-2,4-dien-1-yl)phosphonate 7b1 using 1 equiv of DMPTMS and 0.5 equiv of H₂SO₄. After workup, 242 mg was obtained as an E/Z mixture in a 86/14 ratio (0.82 mmol, 87% yield, yellow oil). Spectral data are reported only for the major isomer. ¹H NMR (400 MHz, CDCl₃) δ 1.76–1.79 (3H, m), 3.53 (1H, dd, ²J_{HP} = 19.2 Hz, J = 8.5 Hz), 3.69 (1H, d, J = 13.4 Hz), 3.75 (3H, d, ${}^{3}J_{HP} =$ 10.5 Hz), 3.79 (3H, d, ${}^{3}J_{HP}$ = 10.5 Hz), 3.92 (1H, d, J = 13.4 Hz), 5.47 (1H, ddd, J = 15.0 Hz, J = 8.5 Hz, ${}^{3}J_{HP} = 6.1$ Hz), 5.74 (1H, dqd, J =15.0 Hz, J = 7.0 Hz, J = 2.3 Hz), 6.08–6.14 (1H, m), 6.23 (1H, ddd, J = 15.0 Hz, J = 10.4 Hz, ${}^{4}J_{HP} = 4.4$ Hz), 7.24–7.34 (5H, m). ${}^{13}C$ NMR (100 MHz, CDCl₃) δ 18.1, 51.1 (d, ${}^{3}J_{CP}$ = 16.5 Hz), 53.4 (d, ${}^{2}J_{CP}$ = 7.2 Hz), 53.6 (d, ${}^{2}J_{CP}$ = 7.2 Hz), 57.0 (d, ${}^{1}J_{CP}$ = 156.7 Hz), 124.2 (d, $^{2}J_{CP} = 7.4 \text{ Hz}$), 127.1, 128.3 (2 × CH_{ar}), 128.4 (2 × CH_{ar}), 130.6 (d, $^{5}J_{CP} = 4.1 \text{ Hz}$), 130.7 (d, $^{4}J_{CP} = 3.8 \text{ Hz}$), 135.3 (d, $^{3}J_{CP} = 13.9 \text{ Hz}$), 139.3. 31 P NMR (162 MHz, CDCl₃) δ 26.31. IR (ATR, cm⁻¹) ν_{max} : 1024, 1241, 1454, 2953. MS (ESI, pos): m/z (%) 186.2/187.2 (M - $[P(O)(OMe)_2]^-$, 100/15). HRMS: m/z calcd for $C_{15}H_{22}NO_3P + H^+$ 296.1410, found 296.1404.

A 215 mg (1.56 mmol) amount of 3b2 was converted into dimethyl ((2E,4E)-1-(propylamino)hexa-2,4-dien-1-yl)phosphonate 7b2 using 1 equiv of DMPTMS and 0.5 equiv of H₂SO₄. After workup, 273 mg was obtained as an E/Z mixture in a 85/15 ratio (1.11 mmol, 71% yield, yellow oil). Spectral data are reported only for the major isomer. ¹H NMR (400 MHz, CDCl₃) δ 0.90 (3H, t, J = 7.4 Hz), 1.43–1.53 (2H, m), 1.75–1.78 (3H, m), 2.46 (1H, dt, J = 11.3 Hz, J = 7.4 Hz), 2.65 (1H, dt, $J = 11.3 \text{ Hz}, J = 7.4 \text{ Hz}), 3.52 (1\text{H}, \text{dd}, {}^{2}J_{\text{HP}} = 19.2 \text{ Hz}, J = 8.5 \text{ Hz}), 3.77$ $(3H, d, {}^{3}J_{HP} = 10.5 \text{ Hz}), 3.79 (3H, d, {}^{3}J_{HP} = 10.4 \text{ Hz}), 5.44 (1H, ddd, J =$ 15.0 Hz, J = 8.5 Hz, ${}^{3}J_{HP} = 6.2$ Hz), 5.73 (1H, dqd, J = 15.1 Hz, J = 6.6 Hz, *J* = 2.3 Hz), 6.06–6.12 (1H, m), 6.24 (1H, ddd, *J* = 15.1 Hz, *J* = 10.5 Hz, ${}^{4}J_{\rm HP}$ = 4.5 Hz). 13 C NMR (100 MHz, CDCl₃) δ 11.5, 17.9, 22.8, 49.7 (d, ${}^{3}J_{CP} = 15.7 \text{ Hz}$), 53.2 (d, ${}^{2}J_{CP} = 7.2 \text{ Hz}$), 53.3 (d, ${}^{2}J_{CP} = 7.2 \text{ Hz}$), 58.3 (d, ${}^{1}J_{CP} = 156.1 \text{ Hz}$, 124.7 (d, ${}^{2}J_{CP} = 7.6 \text{ Hz}$), 130.2 (d, ${}^{5}J_{CP} = 3.9 \text{ Hz}$), 130.5 (d, ${}^{4}J_{CP} = 3.9$ Hz), 134.5 (d, ${}^{3}J_{CP} = 14.1$ Hz). ${}^{31}P$ NMR (162 MHz, CDCl₃) δ 26.41. IR (ATR, cm⁻¹) ν_{max} : 1024, 1223, 1452, 2957. MS (ESI, pos): m/z (%) 138.2/139.2 (M - [P(O)(OMe)₂]⁻, 100/10), 248.2 (M + H⁺, 100). HRMS: m/z calcd for $C_{11}H_{22}NO_3P$ + H⁺ 248.1410, found 248.1402.

A 165 mg (1.20 mmol) amount of (1*E*,2*E*,4*E*)-*N*-isopropylhexa-2,4dien-1-imine **3b1** was converted into dimethyl ((2*E*,4*E*)-1-(isopropylamino)hexa-2,4-dien-1-yl)phosphonate **7b3** using 1 equiv

of DMPTMS and 0.5 equiv of H₂SO₄. After workup, 202 mg was obtained as an *E/Z* mixture in a 9/1 ratio (0.81 mmol, 68% yield, pale yellow oil). Spectral data are reported only for the major isomer. ¹H NMR (400 MHz, CDCl₃) δ 0.98 (3H, d, *J* = 6.2 Hz), 1.06 (3H, d, *J* = 6.2 Hz), 1.76 (3H, dd, *J* = 7.0 Hz, *J* = 1.7 Hz), 2.88 (1H, sept, *J* = 6.2 Hz), 3.64 (1H, dd, ²*J*_{HP} = 21.2 Hz, *J* = 8.6 Hz), 3.76 (3H, d, ³*J*_{HP} = 10.5 Hz), 3.80 (3H, d, ³*J*_{HP} = 10.4 Hz), 5.43 (1H, ddd, *J* = 15.0 Hz, *J* = 8.6 Hz, ³*J*_{HP} = 6.2 Hz), 5.72 (1H, dqd, *J* = 13.4 Hz, *J* = 7.0 Hz, *J* = 2.3 Hz), 6.08 (1H, m), 6.21 (1H, ddd, *J* = 15.0 Hz, *J* = 10.5 Hz, ⁴*J*_{HP} = 4.5 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 18.1, 21.4, 23.8, 45.8 (d, ³*J*_{CP} = 15.6 Hz), 53.3 (d, ²*J*_{CP} = 7.2 Hz), 53.7 (d, ²*J*_{CP} = 7.2 Hz), 55.8 (d, ¹*J*_{CP} = 15.7 Hz), 125.1 (d, ³*J*_{CP} = 14.3 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.67. IR (ATR, cm⁻¹) ν_{max} : 1024, 1233, 1448, 2958. MS (ESI, pos): *m*/*z* (%) 138.1/139.1 (M - [P(O)(OMe)₂]⁻, 100/10). HRMS: *m*/*z* calcd for C₁₁H₂₂NO₃P + H⁺ 248.1410, found 248.1407.

A 56 mg (0.37 mmol) amount of **3b4** was converted into dimethyl ((2*E*,4*E*)-1-(*tert*-butylamino)hexa-2,4-dien-1-yl)phosphonate 7**b4** using 5 equiv of DMPTMS and 2 equiv of H₂SO₄. After workup and column chromatography, 42 mg was obtained as an *E*/*Z* mixture in a 85/ 15 ratio (0.16 mmol, 43% yield, yellow oil). Spectral data are reported only for the major isomer. *R*_f = 0.13 (EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 1.08 (9H, s), 1.74–1.77 (3H, m), 3.71 (1H, dd, ²*J*_{HP} = 24.3 Hz, *J* = 8.1 Hz), 3.74 (3H, d, ³*J*_{HP} = 10.3 Hz), 3.82 (3H, d, ³*J*_{HP} = 10.4 Hz), 5.53 (1H, ddd, *J* = 15.0 Hz, *J* = 7.5 Hz), 5.69 (1H, dqd, *J* = 15.0 Hz, *J* = 6.7 Hz, *J* = 2.3 Hz), 6.03–6.09 (1H, m), 6.21 (1H, ddd, *J* = 15.2 Hz, *J* = 10.4 Hz, ⁴*J*_{HP} = 5.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 18.1, 29.9, 52.1 (d, ³*J*_{CP} = 7.3 Hz), 128.4 (d, ²*J*_{CP} = 5.7 Hz), 53.2 (d, ³*J*_{CP} = 4.5 Hz), 130.8 (d, ⁴*J*_{CP} = 4.5 Hz), 132.8 (d, ³*J*_{CP} = 13.6 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 26.58. IR (ATR, cm⁻¹) ν_{max} : 1028, 1233, 1362, 2955. MS (ESI, pos): *m*/z (%)152.2/153.2 (M – [P(O)(OMe)₂]⁻, 100/10), 263.2 (M + H⁺, 5). HRMS: *m*/z calcd for C₁₂H₂₄NO₃P + H⁺ 262.1567, found 262.1563.

A 103 mg of 3c was converted into dimethyl $((E)-3-((1R^*,5S^*)-6,6$ dimethylbicyclo[3.1.1]hept-2-en-2-yl)-1-(isopropylamino)allyl)phosphonate 7c using 5 equiv of DMPTMS and 2 equiv of H₂SO₄. After workup and column chromatography, 127 mg of 7c was obtained as diastereomers in a 55/45 ratio (0.39 mmol, 83% yield, yellow oil). Signals were assigned to the major (M) or minor (m) diastereomer. $R_f =$ 0.14 (EtOAc). ¹H NMR (400 MHz, CDCl₃) δ 0.76 (3H, s, m), 0.77 (3H, s, M), 0.98 (3H, d, J = 6.1 Hz, m), 0.99 (3H, d, J = 6.1 Hz, M),1.05 (3H, s, m), 1.06 (3H, s, M), 1.12–1.16 (2 × 1H, m, M + m), 1.32 (2 × 3H, s, M + m), 2.09-2.15 (2 × 1H, m, M + m), 2.27-2.39 (2 × 2H, m, M + m), 2.40-2.46 (2 × 1H, m, M + m), 2.53-2.57 (2 × 1H, m, M + m), 2.82-2.94 (2 × 1H, m, M + m), 3.61-3.71 (2 × 1H, m, M + m), 3.73 (3H, d, ${}^{3}J_{HP}$ = 10.1 Hz, M or m), 3.75 (3H, d, ${}^{3}J_{HP}$ = 10.2 Hz, M or m), 3.80 (2 × 3H, d, ${}^{3}J_{HP}$ = 10.4 Hz, M + m), 5.39 (2 × 1H, ddd, J = 15.4 Hz, J = 8.7 Hz, ${}^{3}J_{HP} = 6.5$ Hz, M + m), 5.57 (2 × 1H, br s, M + m), 6.24 (2 × 1H, dd, J = 15.7 Hz, ${}^{4}J_{HP} = 4.2$ Hz, M + m). ${}^{13}C$ NMR (100 MHz, CDCl₃) δ 20.67, 20.70 (M + m), 21.5, 21.6 (M + m), 23.80, 23.82 (M + m), 26.22 (M + m), 31.2 (M + m), 31.9 (M + m), 37.7 (M + m), 40.9 (M + m), 41.1, 41.2 (M + m), 45.7, 45.8 (M + m), 53.4, 53.6 (2 × d, ${}^{2}J_{CP} = 7.2 \text{ Hz}, \text{M} + \text{m}$), 53.7 (2 × d, ${}^{2}J_{CP} = 7.2 \text{ Hz}, \text{M} + \text{m}$), 56.1 (d, ${}^{1}J_{CP} =$ 157.1 Hz, m), 56.2 (d, ${}^{1}J_{CP}$ = 157.3 Hz, M), 120.0, 120.2 (2 × d, ${}^{2}J_{CP}$ = 6.0 Hz, M + m), 125.0, 125.1 ($2 \times d$, ${}^{5}J_{CP}$ = 4.3 Hz, M + m), 135.3, 135.4 $(2 \times d, {}^{3}J_{CP} = 14.3 \text{ Hz}, \text{ M} + \text{m}), 145.6 (d, {}^{4}J_{CP} = 3.6 \text{ Hz}, \text{ M} + \text{m}). {}^{31}\text{P}$ NMR (162 MHz, CDCl₃) δ 26.88 (M), 26.74 (m). IR (ATR, cm⁻¹) $\nu_{\rm max}$: 1026, 1242, 1466, 2952. MS (ESI, pos): m/z (%) 218.1/219.1 $(M - [P(O)(OMe)_2]^-, 100/18)$ 328.0/329.0 $(M + H^+, 40/8)$. HRMS: m/z calcd for C₁₇H₃₀NO₃P + H⁺ 328.2036, found 328.2036.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.6b02340.

Cartesian coordinates of the computational part as well as copies of the ¹H, ³¹P, and ¹³C NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: Saron.Catak@boun.edu.tr

*E-mail: Chris.Stevens@ugent.be

ORCID

Christian V. Stevens: 0000-0003-4393-5327

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

W.D. and T.S.A.H. thank the FWO-Flanders for postdoctoral fellowships (File nos. 17322 and 16348, respectively). The computational research has been funded by the Research Board of Ghent University (BOF), the Interuniversity Attraction Poles Programme (P7/05) initiated by the Belgian Science Policy Office and the Fund for Scientific Research—Flanders (FWO). The computational resources and services used were provided by Ghent University (Stevin Supercomputer Infrastructure).

REFERENCES

(1) Demmer, C. S.; Krogsgaard-Larsen, N.; Bunch, L. Chem. Rev. 2011, 111, 7981–8006.

(2) Wauters, I.; Debrouwer, W.; Stevens, C. V. Beilstein J. Org. Chem. 2014, 10, 1064–1096.

(3) Tanaka, M. In *Hydrofunctionalization*; Ananikov, V. P., Tanaka, M.,

Eds.; Springer: Berlin, Heidelberg, 2013; Vol. 43, pp 167–201. (4) Montchamp, I.-L. Acc. Chem. Res. 2014, 47, 77–87.

(4) Montchamp, J.-L. Acc. Chem. Res. 2014, 4/, //-8/.

(5) Spilling, C.; Malla, R. In *Phosphorus Chemistry II*; Montchamp, J.-L.,

Ed.; Springer International Publishing, 2015; Vol. 361, pp 83–136. (6) Zhao, D.; Wang, R. Chem. Soc. Rev. 2012, 41, 2095–2108.

(0) Z_{11a0} , D.; VVallg, R. Chem. Soc. Rev. 2012, 41, 2095–2108.

(7) Albrecht, Ł.; Albrecht, A.; Krawczyk, H.; Jørgensen, K. A. *Chem. - Eur. J.* **2010**, *16*, 28–48.

(8) Moonen, K.; Van Meenen, E.; Verwee, A.; Stevens, C. V. Angew. Chem., Int. Ed. 2005, 44, 7407–7411.

(9) Enders, D.; Saint-Dizier, A.; Lannou, M.-I.; Lenzen, A. Eur. J. Org. Chem. 2006, 2006, 29–49.

(10) Badkar, P. A.; Rath, N. P.; Spilling, C. D. Org. Lett. 2007, 9, 3619–3622.

(11) Terada, M.; Ikehara, T.; Ube, H. J. Am. Chem. Soc. 2007, 129, 14112–14113.

(12) Sadow, A. D.; Haller, I.; Fadini, L.; Togni, A. J. Am. Chem. Soc. 2004, 126, 14704–14705.

(13) Sadow, A. D.; Togni, A. J. Am. Chem. Soc. 2005, 127, 17012–17024.

(14) Markoulides, M. S.; Regan, A. C. Tetrahedron Lett. 2011, 52, 2954–2956.

(15) Wicht, D. K.; Kourkine, I. V.; Lew, B. M.; Nthenge, J. M.; Glueck, D. S. J. Am. Chem. Soc. **1997**, 119, 5039–5040.

(16) Froestl, W.; Mickel, S. J.; von Sprecher, G.; Diel, P. J.; Hall, R. G.; Maier, L.; Strub, D.; Melillo, V.; Baumann, P. A. *J. Med. Chem.* **1995**, *38*, 3313–3331.

(17) Hill, M.; Krause, W.; Sicken, M. WO2010051891 (A1), 2010, CAN152:526010.

(18) Scheffel, G.; Lachhein, S. EP0388910 (A2), 1990, CAN114:82127.

(19) Yu, Y.; Yi, S.; Zhu, C.; Hu, W.; Gao, B.; Chen, Y.; Wu, W.; Jiang, H. Org. Lett. **2016**, *18*, 400–403.

(20) Silva, A.; Silva, E. Synthesis 2012, 44, 3109-3128.

(21) Magrez-Chiquet, M.; Morin, M. S.; Wencel-Delord, J.; Drissi Amraoui, S.; Basle, O.; Alexakis, A.; Crevisy, C.; Mauduit, M. Chem. - Eur. J. 2013, 19, 13663–13667.

(22) Tissot, M.; Alexakis, A. Chem. - Eur. J. 2013, 19, 11352–11363.
(23) Luo, Y.; Roy, I. D.; Madec, A. G.; Lam, H. W. Angew. Chem., Int.

(25) Edo, 1.; Koy, I. D.; Madec, A. G.; Eani, H. W. Angew. Chem., Int. Ed. 2014, 53, 4186–4190.

(24) Ma, Z.; Xie, F.; Yu, H.; Zhang, Y.; Wu, X.; Zhang, W. Chem. Commun. 2013, 49, 5292-5294.

- (25) Lu, J.; Ye, J.; Duan, W. L. Chem. Commun. 2014, 50, 698-700.
- (26) George, S. C.; Thulasi, S.; Anas, S.; Radhakrishnan, K. V.; Yamamoto, Y. Org. Lett. **2011**, *13*, 4984–4987.
- (27) Nishimura, T.; Noishiki, A.; Hayashi, T. Chem. Commun. 2012, 48, 973–975.
- (28) Sawano, T.; Ashouri, A.; Nishimura, T.; Hayashi, T. J. Am. Chem. Soc. 2012, 134, 18936–18939.
- (29) Uraguchi, D.; Yoshioka, K.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc. 2012, 134, 19370-19373.
- (30) Dell'Amico, L.; Albrecht, L.; Naicker, T.; Poulsen, P. H.; Jorgensen, K. A. J. Am. Chem. Soc. 2013, 135, 8063-8070.
- (31) Silvi, M.; Chatterjee, I.; Liu, Y.; Melchiorre, P. Angew. Chem., Int. Ed. 2013, 52, 10780–10783.
- (32) Tian, X.; Liu, Y.; Melchiorre, P. Angew. Chem., Int. Ed. 2012, 51, 6439-6442.
- (33) Hayashi, Y.; Okamura, D.; Umemiya, S.; Uchimaru, T. *ChemCatChem* **2012**, *4*, 959–962.
- (34) Lear, M. J.; Hayashi, Y. ChemCatChem 2013, 5, 3499-3501.
- (35) Csaky, A. G.; de la Herran, G.; Murcia, M. C. *Chem. Soc. Rev.* **2010**, 39, 4080–4102.
- (36) Silva, E. M. P.; Silva, A. M. S.; Cavaleiro, J. A. S. *Synlett* **2011**, *2011*, 2740–2744.
- (37) Silva, E. M. P.; Grenda, K.; Cardoso, I. N.; Silva, A. M. S. *Synlett* **2013**, *24*, 2375–2382.
- (38) Van Meenen, E.; Moonen, K.; Verwée, A.; Stevens, C. V. J. Org. Chem. 2006, 71, 7903–7906.
- (39) Stevens, C.; Van Meenen, E.; Masschelein, K.; Moonen, K.; De Blieck, A.; Drabowicz, J. *Synlett* **2007**, 2007, 2549–2552.
- (40) De Blieck, A.; Masschelein, K. G.; Dhaene, F.; Rozycka-Sokolowska, E.; Marciniak, B.; Drabowicz, J.; Stevens, C. V. *Chem. Commun.* **2010**, 46, 258–260.
- (41) De Blieck, A.; Catak, S.; Debrouwer, W.; Drabowicz, J.; Hemelsoet, K.; Verstraelen, T.; Waroquier, M.; Van Speybroeck, V.; Stevens, C. V. *Eur. J. Org. Chem.* **2013**, 2013, 1058–1067.
- (42) Van Waes, F. E. A.; Debrouwer, W.; Heugebaert, T. S. A.; Stevens, C. V. *ARKIVOC* **2013**, *2014*, 386–427.
- (43) Sagot, E.; Pickering, D. S.; Pu, X.; Umberti, M.; Stensbøl, T. B.; Nielsen, B.; Chapelet, M.; Bolte, J.; Gefflaut, T.; Bunch, L. *J. Med. Chem.* **2008**, *51*, 4093–4103.
- (44) Meisner, J. S.; Sedbrook, D. F.; Krikorian, M.; Chen, J.; Sattler, A.; Carnes, M. E.; Murray, C. B.; Steigerwald, M.; Nuckolls, C. *Chem. Sci.* **2012**, 3, 1007.
- (45) Evans, D. A.; Hurst, K. M.; Takacs, J. M. J. Am. Chem. Soc. 1978, 100, 3467–3477.
- (46) Teulade, M.-P.; Savignac, P. Synthesis 1987, 1987, 1037-1039.
- (47) Afarinkia, K.; Rees, C. W.; Cadogan, J. I. G. *Tetrahedron* **1990**, *46*, 7175–7196.
- (48) Afarinkia, K.; Cadogan, J. I. G.; Rees, C. W. Synlett **1992**, 1992, 123–123.
- (49) Keglevich, G.; Balint, E. Molecules 2012, 17, 12821-12835.
- (50) Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215-241. (51) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian09; Gaussian, Inc.: Wallingford, CT, USA, 2009.
- (52) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.

- (53) Verstraelen, T.; Van Speybroeck, V.; Waroquier, M. J. Chem. Phys. 2009, 131, 044127.
- (54) Catak, S.; D'hooghe, M.; Verstraelen, T.; Hemelsoet, K.; Van Nieuwenhove, A.; Ha, H. J.; Waroquier, M.; De Kimpe, N.; Van Spevbroeck, V. J. Org. Chem. **2010**, 75, 4530–4541.
- (55) Cottrell, T. L. *The strengths of chemical bonds*; Butterworths, 1958. (56) Lambert, J. B.; Nienhuis, R. J. *J. Am. Chem. Soc.* **1980**, *102*, 6659–6665